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Abstract

This paper estimates the global welfare cost of climate change using a Spatially Integrated Assess-
ment Model (SIAM), accounting for climatic uncertainty by integrating over different climate scenar-
ios. SIAMs have the ability to account for adjustment mechanisms (e.g., trade and migration) to climate
change. However, most work in the literature fails to account for uncertainty around the future realiza-
tions of climate. Jensen’s inequality suggests that failing to integrate over the full distribution of future
climate in a SIAM leads to a biased estimate of the welfare cost when the welfare function has curvature.
We show theoretically that the curvature of welfare to climate depends on the strength of migration, the
spatial correlation of climate shocks, and the curvature of the utility function. We then show that these
second order effects are quantitatively important using simulations of a baseline model.
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1 Introduction

This paper develops a theory of how climatic uncertainty affects the economic cost of climate change in an

economic geography framework, and quantifies that uncertainty using a spatial integrated assessment model

(SIAM).

Global warming has the potential to impose widespread economic costs. Understanding the magnitude of

those costs informs the policy response to climate change. However, estimating these costs is complex and

fraught with uncertainty, particularly given the spatial and regional heterogeneity of the global economy. One

approach, based on Pigouvian taxation, attempts to measure the global (or national) social cost of carbon

(SCC) through a broad set of observed health and production outcomes (see, e.g., Nordhaus (2017) and

Carleton and Greenstone (2022)). A different approach is to forecast the national and sub-national costs

of climate change and efficacy of various policy instruments in quantitative macroeconomic frameworks

(Nordhaus and Yang, 1996; Cruz and Rossi-Hansberg, 2021). Estimated costs in the latter approach tend to

be lower, as macroeconomic models capture both the benefits of climate change and account for adaptation

via trade, migration, and innovation.

However, the realization of future climate is uncertain; we do not know what world we will inherit tomor-

row. Extant quantitative macroeconomic work on the cost of climate change fails to account for this in two

ways. First, it fails to place confidence intervals around the estimates of climate change’s welfare effect due

to climatic uncertainty. Second, and more importantly, by failing to propagate uncertainty through the as-

sessment model, such papers may over- or under-state the welfare impact of climate change depending on the

convexity of the welfare function, due to Jensen’s inequality. The convexity of the welfare function governs

the economic costs associated with tail risk phenomenon, i.e, catastrophic events that occur with non-zero

probability (Weitzman, 2009; Weitzman, 2011). In fact, the inability of standard SIAMs to allow for these

tail risks into their welfare assessment is seen as a significant failure of these models (Pindyck, 2013).

A common missing feature through this profile of work is the lack of a proper framework that can deal with

uncertainty in future climate scenarios. Uncertainty in climate projections is driven by three components:

scenario uncertainty, internal variability, and intermodel uncertainty (Schwarzwald and Lenssen, 2022). This

paper emphasizes the third form of uncertainty: in particular, we focus on the equilibrium climate sensitivity

2



(ECS) estimates across CMIP5 (Coupled Model Intercomparison Project) and CMIP6 models from Schlund

et al. (2020). ECS estimates forecast the change in average global temperature in the long-run after a doubling

of atmospheric CO2. The focus of this paper is to estimate the welfare cost associated with this doubling.

Barnett et al. (2022) highlights how important uncertainty in our knowledge of future climate scenarios (and

other features) is towards how we think of welfare costs, and appropriate policy design. While this paper

does not compute optimal policy, we use Monte Carlo simulations as provide a feasible way of accounting

for uncertain climate scenarios in estimating welfare losses, though we emphasize we are not the first to use

Monte Carlo methods in a spatial setting (Dingel and Tintelnot, 2021).

Our goal is to estimate the size of the confidence intervals around mean estimates of economic damages

associated with climate change, and to measure the bias in that estimate from failing to properly integrate

over the distribution of future climate shocks. The paper begins with a theoretical decomposition of what

dictates the curvature of the welfare function in a broad class of spatial models. This allows for a framework

to analyze the different economic forces that uncertainty matter for welfare loss estimation. We use a general

spatial model to characterize the second-order impacts of a shock to geographic fundamentals, which govern

how climatic uncertainty affects welfare. We show that the curvature of the welfare function depends on

the migration response to climate, and how spatial linkages through trade can amplify the cost of spatially

autocorrelated shocks. In the second part of the paper, we present an economic model that features these

key economic forces and use it to evaluate the welfare costs of climate change across different regions. The

model eliminates some of the sophisticated elements of other SIAMs to isolate the forces we argue are key,

and buys us the computational ability to integrate over a large number of climate scenarios.

Our starting point for the model is Allen and Arkolakis (2014). The model allows for climate to affect

exogenous region-specific amenities and productivities, while allowing agents in the model to make optimal

decisions pertaining to where they want to live and what they consume. In short, the model features spatially

heterogeneous effects of climate change on model primatives, and includes adaptation mechanism via trade

and migration. We abstract from dynamic impacts of climate change through altering the global growth

trajectory, natality decisions, and the endogenous production of emissions. We instead take the path of

climate as given and use the model to measure the forces which govern the convexity of the welfare function.

Our goal is to characterize the importance of climatic uncertainty in economic geography models rather
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than use the model to conduct policy analysis. Pindyck (2013) makes the point that IAMs are particularly

ill-suited to be able to conduct welfare or policy analysis from climate change. One of the key reasons for

this, he argues, is the inability to account for tail risk events. We provide a methodology wherein we can

incorporate these events easily.

Our work compliments the burgeoning literature which uses SIAMs to study and forecast the economic effects

of climate change. Cruz and Rossi-Hansberg (2021) use a sophisticated dynamic spatial model to determine

welfare losses in a laissez-faire (no policy) world as a result of global warming. They show that welfare losses

are concentrated in the global south, and also assess the impact of abatement technologies, carbon taxes, and

clean energy subsidies. Krusell and Smith Jr (2022) also build a dynamic model with heterogeneous regions

and endogenous consumption-savings decisions, without any trade or migration, to compute welfare effects

of climate change. Rudik et al. (2021) and Cruz (2023) account for sectoral heterogeneity in a similar model,

while Nath (2021) evaluates the impact of climate change on sectoral reallocation due to nonhomothetic

preferences. Conte (2022) develops a spatial model to understand the role of trade networks, migration

costs, and agricultural yields to quantify how real output and migration in Sub-Saharan Africa is impacted

as a result of global warming. Balboni (2019) uses a spatial model to understand the impact of sea level rises

on coastal cities, and quantifies the cost of road investments in Vietnamese coastal regions.

The rest of this paper is organised as follows. Section 2 presents a theoretical decomposition of welfare

in spatial models, and explains what might drive convexity in the welfare function. Section 3 presents our

quantitative model that is used for welfare analysis. Section 4 describes the model calibration, damage func-

tion estimation, and the distribution of future climate. Section 5 shows our preliminary results. Section 6

concludes and offers next steps.

2 Theory

Economic assessment models map changes in climate C, a random variable, to welfare via a function W

whose value for a given C = c is determined through the general equilibrium of an economic model. For-

mally, W : c 7→ R+. The welfare change (in percent terms) associated with a particular climate scenario

is W(c)/W(0) where c = 0 represents some baseline. However, climate forecasts are uncertain and thus
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Var(C) > 0. Assessment models that do not account for this uncertainty report W(EC [C]) as the welfare

cost of climate change. This is not the true forecast, EC [W(C)] when W has curvature. This is due to

Jensen’s inequality, which states,

EC [W(C)] ̸= W(EC [C]) if
d2W
dc2

̸= 0.

In particular, using a second-order Maclaurin expansion,

EC [W(C)]/W(0)−W(EC [C])/W(0) =
1

2

d2W
dc2

1

W

∣∣∣∣
c=0

× Var(C) +O(C3). (1)

Equation (1) shows that the curvature of the welfare function determines the importance of accounting for

uncertainty. The importance of higher moments – e.g., the skewness C, which may embed tail scenarios

of 6◦C of warming or more – is reflected in higher-order derivatives of the welfare function. Our goal is to

understand how variability in climate affects our understanding of welfare, and so our theoretical analysis

abstracts from the economic forces that make the skewness and fat-tailed nature of the distribution of future

temperature relevant for welfare analysis, though our quantitative framework can assess these impacts, too.

A simple model of welfare We begin by presenting a simple and general spatial model to derive the forces

that give curvature to the welfare function. In the model, there is a continuum of individuals of measure one

that decide where to live across N sites indexed by i. In each location, they receive indirect utility ui which

depends on the number of individuals already living in the location, ℓi, and economic activity elsewhere,

as summarized by local real income, Mi(c, {ℓj}) which captures the entire supply side of the economy,

including interactions across space, like trade. Climate c directly enters utility, and also affects production

and thus Mi. Geography enters the model through both factor mobility (the ability for agents to move across

sites) and spatial linkages (embodied in Mi). Utilitarian welfare in the model is then summarized by,

W =
∑
i

ℓiui(c,Mi).

A spatial equilibrium is an allocation {ℓi}Ni=1 such that:

1. there is no spatial arbitrage: workers are indifferent across locations, so ui = uj ∀i, j (in particular, at
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the spatial equilibrium, ui = W by construction), and,

2. the labor market clears: all workers are allocated to some location,
∑

i ℓi = 1

Climate affects welfare through three channels: (1) the direct effect on utility via amenities ∂ui
∂c (2) via

production and therefore real income, dMi
dc , and (3) through affecting the spatial distribution of economic

activity dℓi
dc . We restrict our analysis to efficient allocations so there are no welfare gains simply from altering

the allocation of factors in the economy. We moreover restrict our analysis to cases in which, ∂ log ui

∂ logMi
= 1.

This assumption is consistent with a utility function that is linear in real income, as in the common Cobb-

Douglas case. That is, we rule out nonhomotheticities, though these may be important (Nath, 2021). Our

framework allows us to set an Engel elasticity to any constant in (0, 1], but we choose 1 for simplicity. This

assumption does not meaningfully alter the analysis but eliminates a parameter that makes our resulting

derivation appear more opaque. Setting constant and location-invariant elasticities is common in the spatial

literature. Under these assumptions, a shock in climate affects welfare to the first order via the expression,

dW
dc

= E
[
∂ui
∂c

]
−W · E

[
d logMi

dc

]
, (2)

where expectations weight by ℓi. Using equation (2), the constant elasticity assumption, and the equilibrium

conditions, the second order effect is given by,

d2 logW
dc2

1

W
= E

[
d2ui
dc2

]
︸ ︷︷ ︸

curvature of utility

+Cov
(
d log ℓi
dc

,
∂ log ui

∂c
+

d logMi

dc

)
︸ ︷︷ ︸

adaptation via migration

(3)

− Var
(
d logMi

dc

)
︸ ︷︷ ︸

spatial inequality

+Cov
(
∂ log ui

∂c
,
d logMi

dc

)
︸ ︷︷ ︸

Correlation of damages

, (4)

See Appendix A.1 for a derivation.

Discussion What equation (4) informs us is that the convexity of the welfare function comes from the convex-

ity of utility, alongside two economic geography forces. Regardless of the underlying utility function, whose

convexity is unknown and can be altered by monotonic transforms of the utility function without affecting

agents choices, these economic geography forces convexify (or make concave) the welfare function.
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First, there is the sorting of people across locations, given by the covariance term. As an agent’s location

is the result of a utility-maximizing choice, agents will sort towards improving locations (∂ui/∂c > 0) or

away from locations where Mi falls in response to climate. That sorting generates convexity is illustrated in

Figure 1: under the assumption that utility is linear in climate, without migration, welfare responds linearly.

However, the ability of agents to migrate to improving regions, and away from ones experiencing welfare

losses necessarily means that the welfare curve must lie above the line.

c

W

Without migration

migration

spatial inequality

c = 0

Figure 1: Welfare as a function of climate when indirect utility is linear in climate. Agents’ ability to adapt
through migration generates a convex welfare function, but spatial inequality bends it concave.

The third term in the second order expansion of the welfare function is the amplification of the production re-

sponse to climate. An simple example makes this point transparent. Assume, as we will do in the quantitative

section, that the production side of the economy is Armington: each region produces a unique traded good

that are aggregated with a CES aggregator, and suppose trade costs are iceberg. Real income can be written

as wi/Pi, where wi are local wages, and Pi is a CES ideal price index that takes on a market access form.

Consider a partial equilibrium (i.e., hold wi fixed) shock to climate. Under this assumption, the variance in

logMi is simply the variance in Pi. Shocks to the price index can be decomposed as,

∂ logPi

∂c
∝
∑
j

(
τijzj
Pi

)−σ

︸ ︷︷ ︸
trade shares, ≡ Xij

d log zj
dc

where zj is the marginal cost of production in location j, and τij are the iceberg trade costs, and both enter

with raised to the power of the trade elasticity. Suppose that the marginal cost shocks are distributed with

mean 0, variance 1 and covariances ρij . Spatial correlation occurs when Cov(τij , ρij) > 0; i.e., when the
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shock correlation structure mimics the pattern of trade (which depends on geography), and nearby shocks

are correlated. Then,

Var
(
d logPi

dc

)
= 1 +

∑
j

Xij(τij)
2 +

∑
j

∑
i

Xij(τij)
2ρij︸ ︷︷ ︸

spatial correlation

.

What the above formula reveals is that the variance of Pi in a broad class of models increases as spatial

correlation increases, a point made in Dingel, Meng, et al. (2022).

The last term is negative by the logic of spatial equilibrium – changes in amenities must be offset by changes

in prices. Differentiating ui = W , we see that,

∂ log ui
∂c

+
∂ log ui
∂ logMi

d logMi

dc
=

d logW
dc

.

Using our assumption on the elasticity of agents’ Engel curves, we can write the last term as,

Cov
(
∂ log ui

∂c
,
d logMi

dc

)
= Cov

(
∂ log ui

∂c
,
d logW

dc
− ∂ log ui

∂c

)
= −Var

(
∂ log ui

∂c

)

which captures the spatial heterogeneity in the amenity response to climate change. The more varied, the

more concave.

Returning to equation (4), whether the migration term or the shock term dominate is an empirical question.

The welfare function can either be more concave or convex than the utility function due to these economic

geographic forces. These changes in shape dictate whether we under- or over-estimate welfare losses in

spatial models by failing to account for uncertainty. In Section 5, we empirically derive the shape of the

welfare function using the calibration of the model presented in Section 3.

3 Quantitative Model

This section describes our model that is used to undertake welfare analysis from climate shocks. The model

is a version of that of Allen and Arkolakis (2014), adapted to highlight the role of climate, trade, migration,
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and the concavity of utility.

Environment The world is comprised of a discrete set of regions indexed by i or j. Regions are characterized

by both their location in space alongside their fundamental amenity value Āi and labor productivity Z̄i, both

of which are a function of temperature Ti. Each location produces a unique consumption variety with a

linear-in-labor technology, which is traded around the world subject to iceberg trade costs τij ∈ [1,∞). A

unit mass of freely mobile agents choose where to locate amongst these locations and how much to consume.

Preferences Utility for agent ω is as follows,

ui(ω) = νi(ω)AiCi

Where νi(ω) is Fréchet distributed with location parameter 1 and scale parameter θ. Location-specific ameni-

ties are given by Ai and are a product of fundamental amenities and the climate such that:

Ai = ĀiFA(Ti) (5)

Ci is consumption utility of a CES aggregator across all varieties,

Ci =

∑
j

c
σ−1
σ

ji

 σ
σ−1

,

where cji denotes the amount of the consumption good an agent in i sources from location j.

Agents inelastically supply one unit of labor labor and earn reward wi, which is their income. Indirect utility

can therefore be written as,

vi(ω) = νi(ω)Ai(Ti)(wi/Pi)

where Pi is the price index associated with the consumption aggregator. Due to the Fréchet shocks, the share

of the population ℓi in location i is given by,

ℓi =
(Ai(wi/Pi))

θ∑
j (Aj(wj/Pj))

θ
.

Technology Each location makes a single variety and sells it in a competitive global market with linear
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technology,

qi = Ziℓi

where Zi = Z̄iFZ(Ti) represents productivity as a product of fundamental productivity and the impact of

climate. Producers act competitively, so the price of a good produced in i and sold in j reflects the iceberg

trade cost τij times the marginal cost, or out-of-the-gate price,

pij = τij
wi

Zi
.

Thus the CES price index faced by consumers in destination j is,

Pj =

(∑
i

(
τij

wi

Zi

)1−σ
) 1

1−σ

Equilibrium Equilibrium is a set of wages wi such that when households and firms take them as given and

behave optimally, the goods market clears, which occurs when income is equal to the value of all goods sold,

wiℓi =
∑
j

pijcij .

A vector of unique wages exists up to scale for this according to the theorems of Allen and Arkolakis (2014), as

this model is isomorphic in its positive predictions (equilibrium prices and quantities) to one in which there is

free mobility, and local amenities respond endogenously to population with d logBi/d log ℓi = −1
θ , though

our model does not feature endogenous amenities entering the welfare calculation. A complete treatment of

the model equilibrium can be found in Appendix A.3.

Welfare Our welfare function is inclusive of the expected value of the Fréchet shocks and is thus

W =

(∑
i

(Ai(wi/Pi))
θ

)1/θ

.

Our decomposition in Section 2 applies to this economy despite the idiosyncratic variation in utility from the

Fréchet shocks and our ex-ante notion of expected utility in place of the welfare function defined previously.

We show this formally in Appendix A.2.
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4 Calibration

We invert the model presented in Section 3. Inversion simply means rationalizing the observed wi and ℓi as

an equilibrium of the model for a fixed set of Ai and Zi terms, alongside elasticities ξ, σ, and θ. The inversion

is unique due to the theorems of Allen and Arkolakis (2014).

Data Data on population and GDP for 1◦ × 1◦ cell levels comes from the G-Econ 4.0 project (Nordhaus,

2006). We use data for the years 1990, 1995, 2000, and 2005, and invert the model in each year to form

a panel of Ait and Zit. We interpret differences across years in fundamentals as driven by climate, and

we use this variation to identify our damage functions. Gridded temperature data comes from Berkeley

Earth Surface Temperature (BEST). This dataset provides data as frequent as daily maximum, minimum and

average temperature at a granular spatial level. We use the database that provides annual average temperature

at a resolution of 1◦ × 1◦.

Parameterization Our model has three key parameters: θ, which governs the migration response to shocks;

σ, the Armington trade elasticity, the role of spatially autocorrelated shocks; and ξ, which governs the elastic-

ity of utility to real income. We take these parameters as given from the literature. We set σ = 3.8, following

the meta-analysis of estimated Armington trade elasticities in Bajzik et al. (2020). Following Havraneka

et al. (2015), we set ξ = 0.5. We set θ = 1.25. Our choice is motivated by the isomorphism in Allen and

Arkolakis (2014) that a model with local congestion λ̃ and idiosyncratic Frechet preference dispersion θ̃ is

equivalent to one with local congestion λ = λ̃− 1/θ̃ and free mobility. Following Cruz and Rossi-Hansberg

(2021), if λ̃ = −0.3 and θ̃ = 2, then we need to pick our θ such that −1
θ = −0.3 − 0.5. We take the trade

cost matrix {τij} from Desmet et al. (2018). Table A1 gives a full description of the model parameters and

their sources.

Inversion outcomes We plot the recovered temperature-adjusted amenities (Āi) and productivities (Z̄i) from

inverting the model using 2005 G-Econ data in Figure 2. We detail the inversion procedure in Appendix B.1.

The model rationalizes low population regions like Northern Canada, Siberia, the Amazon rain forest, along-

side deserts like the Saharan, Gobi, and Tibetan plateau as having low amenity value. Populous areas like

western Europe, eastern China, and the northeastern United States appear high-amenity as well. However, as

a spatial equilibrium framework, the model rationalizes high-population areas with low real wages as high-
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Figure 2: Recovered fundamentals from the model inversion in 2005, adjusted for 2005 local temperature
using the estimated damage functions. Left: log amenities, log Āi. Right: log productivities, log Z̄i. The
inversion identifies these parameters only up to scale, rendering the interpretation of the levels meaningless.

amenity value too, like those in West Africa. In terms of productivity, the east coast of the United States,

alongside western Europe, Eastern China, alongside urban Brazil, Japan, and Australia all appear high pro-

ductivity while Central Asia, Amazonia, and vast swaths of sub-Saharan Africa do not. In short, the inversion

procedure produces sensible fundamentals.

Damage functions We parameterize the relationship between temperature and fundamentals as,

Xit = StX̄iFX(Tit)

where Xit = {Ait, Zit} are the inverted productivities and amenities for each year. Our inversion procedure

only identifies these parameters up to scale, St. Taking logs and rearranging, we form the estimating equation,

logXit = logFX(Tit) + χi + χt + uit, (6)

where χi and χt are cell and year fixed effects, and uit represents error from model mispecification, as other

unobserved shocks may influence Xit. We follow Cruz and Rossi-Hansberg (2021) and estimate FX(Tit) by

approximating the function with,

logFX(Tit) =
∑
k

βkTit × 1(Tit ∈ Tk)

where Tk are ventiles of the temperature distribution. As βk estimates the average derivative of logF (Tit)
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Figure 3: Left: Damage functions and distribution of cell-level annual temperature, 1990-2005. Right:
Estimated downscaling parameters ĝi.

along the distribution Tit, we numerically integrate our resulting βks and use nonlinear least squares to fit a

parametric form on F (Tit),

F (Tit) = exp(−γ1(Tit − T ∗)2)× 1(Tit < T ∗) + exp(−γ2(Tit − T ∗)2)× 1(Tit ≥ T ∗)

i.e., bell-shaped damage functions on (0, 1) that peak at T ∗ and have slopes on either side controled by γ1 and

γ2, which are allowed to vary. Our functional form assumption forFX(T ) captures the fact that fundamentals

peak around certain temperature values, a point made in Burke et al. (2015).

For consistent nonparametric estimates of γ1, γ2 andT ∗ for each set of fundamentals, we require logFX(Tit) ⊥

uit | χi, χt, which rules out concerns that our estimates may be biased as high-productivity places may be in

high-temperature areas due to unobserved confounders, or that shocks to temperature and productivity may

both be trending secularly. However, we are not immune to the criticism that the spectrum of unmeasured

climate shocks (e.g., drought) may be correlated with temperature. Finally, in practice, we do not include

region fixed effects because our panel is very short (t = 1, ..., 4). Thus, we parameterize χi as a function of

cell-level covariates: a second-order polynomial in latitude and longitude, and geographic covariates from

the G-Econ database, including log distance to coast, terrain roughness, and so on; see Appendix B.1 for

details.

Estimating equation (6) provides estimates of peak productivity and amenities around 10◦C, similar to Burke
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et al. (2015)’s estimate of around 13◦C. Figure 3 plots the damage functions and the distribution of cell-level

temperature. As some cells are to the left and right of the peaks of the damage functions, global warming

will benefit some regions, and worsen others.

Temperature downscaling To integrate model outcomes of the distribution of global temperature, we need

to fix the mapping from global to local temperature in order to propagate uncertainty in global temperatures

through the model. Following Mitchell (2003) and Cruz and Rossi-Hansberg (2021), we assume and estimate

a linear relationship between changes in global temperature and changes in local temperature,

tit = giTt + αi + εit (7)

where the location-specific coefficient gi tells us how much temperature of a region, tit, changes as global

temperature, Tt, changes by 1◦C. The key object of interest here is gi which we parameterize as a second-

order polynomial in observable like latitude, longitude, and geographic covariates as we do when estimating

equation (6). To estimate equation (7), we use the entirety of the Berkeley temperature dataset, from the

first year in which there is global annual coverage, 1894. In Figure 3, we display the map of estimated

down-scaling coefficients. Our estimates account for 41% of the changes in local temperature changes from

cell level fixed effects (αi) over the sample period. Locations for which the slope on global temperature, gi

exceeds 1 (and thus warm faster than the average cell) are broadly located in the global north, and Sahara,

while cells that warm slower than the global average are located in the in the global south. The estimation

procedure recovers few cells – mostly small pacific islands – for which ĝi < 0, implying that these locations

cool as global temperature rises, perhaps reflecting changing trade winds or sea level rise.

Equilibrium climate sensitivity distribution We take the distribution of equilibrium climate sensitivity

across the 70 participating models in CMIP (Coupled Model Intercomparison Project) 5 and 6 from Schlund

et al. (2020). With these ECS estimates, we fit a log-normal distribution via maximum likelihood to recover

the distribution of ECS across the range of potential warming scenarios. In Appendix Figure A1, we plot

the estimated density function. Our procedure results in a ECS distribution that roughly corresponds to that

estimated in Sherwood et al. (2020) using more sophisticated methods.

14



5 Welfare

Figure 4: Welfare as a function of global climate, and the estimated cross-model ECS distribution.

We estimate the model over the ECS distribution to get Monte Carlo estimate of E[W (C)]. We proceed as

follows. First, we discretize the cross-model ECS distribution into 60 different potential global temperature

values. For each global temperature rise, we obtain the implied downscaling. We then transform the down-

caling into a scaling of Āi and Z̄i using the estimated damage functions. We estimate the model using these

new fundamentals to compute welfare.

The welfare function, as represented as welfare loss with respect to the baseline 1−W (C)/W (0) is plotted

in Figure 4. The loss is concave, due to adaptive forces, suggesting that the naive estimated loss using

W(E[C]) ≈ 26.7% is higher than the Monte Carlo estimate (using E[W(C)]) of 27.6%. Moreover, the

associated 95% confidence intervals are fairly tight around E[W(C)], ranging from 25.2% to 29.1% welfare

loss, and containing the “linear” estimate. Our estimated welfare loss bends backwards at high degrees of

warming as the marginal damage in some locations is outweighed by gains elsewhere at high degrees of

warming. Our results suggest that adaptation is enough to reverse the potential for catastrophic losses at high

degrees of warming.

These welfare numbers for the welfare cost of a doubling of atmospheric carbon are high, but that is because

they are not discounted, and it may take up to a century for higher temperatures to be realized. Applying a
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discount factor to the welfare loss of 0.985 over 100 years suggests welfare losses on the order of 6%, in line

with the existing literature.

Figure 5: Welfare as a function of global climate, and the estimated cross-model ECS distribution.

In Figure 5, we set d log ui

d logMi
= 1/2 so that utility is more concave in income. This lowers the losses by several

percentage points (a level shift) but dampens the curvature (a flattening) yet it does not change the overall

pattern – welfare loss is concave and bends back; peak damages occur between 6-8◦C of warming.

Local uncertainty so far, the only uncertainty in the model comes from global temperatures, but the mapping

from global to local temperature is also uncertain. To study the role of local uncertainty in shaping welfare,

we fix global temperature at 3.6 degrees of warming, and allow gi to vary.

We estimate the local distribution of the temperature downscaling, gi via a Bootstrap procedure. First, we take

our estimates of gi = X ′
iβ̂, where Xi contains a polynomial in local physical characteristics, and generate

a distribution of β(n) (where n indexes the nth Bootstrap sample) by drawing β(n) ∼ N(β̂, V̂ ), where N is

a normal distribution and V̂ is the estimated variance-covariance matrix from the OLS regression (allowing

for two-way clustering with cells and years). We then generate a bootstrap g
(n)
i = X ′

iβ
(n), and simulate the

counterfactual using this downscaling.

We plot variance of g(n)i across bootstrap samples against the baseline gi, and map it in Figure 6. What

it shows is that we are more uncertain (i.e., there is more variance across bootstrap samples) of the local
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downscaling in places that the downscaling is greater. These areas are predominately located in Northern

Canada and Siberia.

Figure 6: Left: 5th and 95th percentiles (net the mean) of the distribution of sampled gi vs. ḡi. Right
log sd(gi) across space.

In Figure 7, we compute the mean of welfare over the bootstrap samples. It has a thin but longer right tail (less

loss) but with most mass concentrated around the mean such that again E[W(C)] does not differ significantly

from the naive W(E[C]).

6 Conclusion and future steps

The primary objective of this paper is to provide both a theoretical description and quantification of the

economic forces that shape how climatic uncertainty affects forecasts of the welfare impacts of climate change

in a broad class of quantitative spatial models.

We show it is the second-order impacts of climate on welfare that determine the importance of climatic

variability on welfare. The size of these second order effects depend on not only the concavity of the utility

function (which is unknown) but also how migration and trade affect welfare. Migration, as an adaptive

mechanism, convexifies the welfare function, while trade amplifies the welfare loss of spatially correlated
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Figure 7: Distribution of % change in welfare over the bootstrap samples. Sample mean in blue, welfare of
the mean of the sample in red.

shocks and bend it concave.

Our quantitative model marries computational feasibility with these key spatial forces that drive heteroge-

neous responses across regions: trade and migration. This paper shows that second order effects are quantita-

tively significant, as the our estimated welfare loss is concave, suggesting that baseline models may overstate

the welfare loss from climate chance, and is robust to changing the curvature of utility to income.

Future iterations of this paper will study more sources of climatic uncertainty in terms of a richer under-

standing of the local realization of climate, and estimate richer damage functions that map additional climate

moments (e.g., local annual temperature variance) to damages on economic fundamentals.

This paper is the first in a long class of SIAMs that is able to integrate climactic uncertainty in its framework

without compromising on the rich spatial heterogeneity in the global economy. However, inevitably, our

model is unable to capture certain effects that might be of interest when thinking about future uncertainty.

This include adding dynamics, or adding a feedback mechanism from the climate into the economy itself.

This would enable the model to integrate uncertainty when thinking about optimal policy design. Our hope is

that this project highlights a way to deal with climactic uncertainty in a feasible manner, since this is critical

in informing the welfare costs imposed by global warming.
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A Theory appendix

A.1 Derivation of the second-order decomposition with free mobility

First,
W =

∑
i

ℓiui(c, Mi︸︷︷︸
≡wi/Pi

)

assumptions:

• ∂2 log ui

∂c∂Mi
= 0 separability of income and amenities

• d log ui

d logMi
= 1 or any constant; log-linear Engel curves

• ui = W spatial equilibrium

•
∑

i ℓi = 1 inelastic aggregate labor supply

First,
dW
dc

=
∑
i

ℓi
∂ui
∂c

+W
∑
i

ℓi
d logMi

dc

Apply Dc to the first term ∑
i

dℓ

dc

∂ui
∂c

+
∑
i

ℓi

(
∂2ui
∂c

+
∂2ui
∂c∂Mi

dMi

dc

)
Note that under assumption (1),

∂2ui
∂c∂Mi

=
1

ui

∂ui
∂c

∂ui
∂Mi

Differentiating W again it is convenient to write it as,

dW
dc

= W

[∑
i

ℓi
∂ log ui

∂c
+
∑
i

ℓi
d logMi

dc

]

and then the last term is,

∑
i

dℓi
dc

d logMi

dc
−
∑
i

ℓi

(
d logMi

dc

)2

+
∑
i

ℓi
1

Mi

d2Mi

dc

So putting it all together,

d2W
dc2

=
∑
i

dℓ

dc

∂ui
∂c

+
∑
i

ℓi

(
∂2ui
∂c

+
1

ui

∂ui
∂c

∂ui
∂Mi

dMi

dc

)

+W

[∑
i

ℓi
∂ log ui

∂c
+
∑
i

ℓi
d logMi

dc

]∑
i

ℓi
d logMi

dc

+W

[∑
i

dℓi
dc

d logMi

dc
−
∑
i

ℓi

(
d logMi

dc

)2

+
∑
i

ℓi
1

Mi

d2Mi

dc

]
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Do more elasticity-formats and rearranging,

d2W
dc2

1

W
=
∑
i

ℓi
d log ℓi
dc

∂ log ui
∂c

+
∑
i

ℓi

(
∂2ui
∂c

1

ui
+

1

(ui)2
∂ui
∂c

∂ui
∂Mi

dMi

dc

)

+

[∑
i

ℓi
∂ log ui

∂c
+
∑
i

ℓi
d logMi

dc

]∑
i

ℓi
d logMi

dc

+

[∑
i

dℓi
dc

d logMi

dc
−
∑
i

ℓi

(
d logMi

dc

)2

+
∑
i

ℓi
1

Mi

d2Mi

dc

]

and again,

d2W
dc2

1

W
=
∑
i

ℓi
d log ℓi
dc

∂ log ui
∂c

+
∑
i

ℓi

(
∂2ui
∂c

1

ui
+

∂ log ui
∂c

∂ log ui
∂ logMi

d logMi

dc

)

+

(∑
i

ℓi
∂ log ui

∂c

)(∑
i

ℓi
d logMi

dc

)
+

(∑
i

ℓi
d logMi

dc

)2

+

[∑
i

dℓi
dc

d logMi

dc
−
∑
i

ℓi

(
d logMi

dc

)2

+
∑
i

ℓi
1

Mi

d2Mi

dc

]

Rearranging,

d2W
dc2

1

W
= cov(

d log ℓi
dc

,
∂ log ui

∂c
) + E[

∂2ui
∂c

1

u i
] + cov(

d log ui
dc

,
d logMi

dc
)− var(

d logMi

dc
)

+ cov(
d log ℓi
dc

,
d logMi

dc
) + E[

1

Mi

d2Mi

dc
] + 2E[

d log ui
dc

]E[
d logMi

dc
]

now we employ the fact that,
d2y

dx2
=

d2 log y

dx2
+

(
d log y

dx

)2

to rewrite the terms,

E[
∂2ui
∂c

1

u i
] = E[

1

Mi

d2Mi

dc
] + 2E[

d log ui
dc

]E[
d logMi

dc
]

into,

E[
∂2 log ui

∂c2
]+E[

d2 logMi

dc2
]+

(
E[

∂ log ui
∂c

] + E[
d logMi

dc
]

)2

= E[
∂2 log ui

∂c2
] + E[

d2 logMi

dc2
]︸ ︷︷ ︸

≡C(ui)

+

(
dW
dc

1

W

)2

So, finally,

d2W
dc2

1

W
= C(ui) + cov(

d log ℓi
dc

,
∂ log ui

∂c
) + cov(

d log ui
dc

,
d logMi

dc
)− var(

d logMi

dc
)

+ cov(
d log ℓi
dc

,
d logMi

dc
) +

(
dW
dc

1

W

)2
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A.2 Welfare with Fréchet shocks

If agents recieve idiosyncratic location specific preference shocks, the literature generally assumes the id-
iosyncratic taste draws follow a Fréchet distribution (with shape parameter θ and scale parameter 1). In this
case, welfare can be expressed as:

W =

(∑
i

vi(ℓi, Pi, c)
θ

) 1
θ

We can show that the previous derivations of first and second order effects of climate on welfare can go
through in this case as well. To begin, consider the distribution of workers ℓi in a location which is given by:

ℓi =
vθi∑
j v

θ
j

=

(
vi
W

)θ

Now, consider a climate shock whose first order effect can be expressed as:

dW
dc

= W1−θ

[∑
i

vθ−1
i

∂vi
∂c

+
∑
i

vθ−1
i

∂vi
∂ℓi

dℓi
dc

+
∑
i

vθ−1
i

∂vi
∂Pi

dPi

dc

]
= W

[∑
i

1

Wθ
vθ−1
i

∂vi
∂c

+
∑
i

1

Wθ
vθ−1
i

∂vi
∂ℓi

dℓi
dc

+
∑
i

1

Wθ
vθ−1
i

∂vi
∂Pi

dPi

dc

]

= W
[∑

i

ℓi
∂vi/vi
∂c

+
∑
i

ℓi
∂vi/vi
∂ℓi

dℓi
dc

+
∑
i

ℓi
∂vi/vi
∂Pi

dPi

dc

]
since ℓi =

(
vi
W

)θ

= W
[∑

i

ℓi
∂vi/vi
∂c

+
∑
i

α
dℓi
dc

+
∑
i

ℓi
∂vi/vi
∂Pi

dPi

dc

Pi

Pi

= W
[∑

i

ℓi
∂ ln vi
∂c

+ β
∑
i

ℓi
d lnPi

dc

]
which carries the same interpretation as shown in the simpler case. We can obtain a similar second order
decomposition here as well.

A.3 Quantitative Model Equilibrium

First, we define the revenue of firms in i from selling to region j as:

Xij = pijcij =

(
pij
Pi

)1−σ

Ci (8)
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Markets are said to clear if income is equal to the value of goods sold in all locations, i.e:

wjℓj =
∑
i

Xij ∀j ∈ I

→ wjℓj =
∑
i

(
pij
Pi

)1−σ

Ci (9)

Further, we require aggregate labor markets to clear such that:∑
i

ℓi = 1 (10)

Spatial Equilibrium: Given a set of parameters {θ, σ, ξ} and trading costs τij , a spatial equilibrium is
a distribution of workers {Li}, quantities {Qi, Ci, cij}, and prices {Pi, pij , wi} such that:

1. Markets clear as in (9)

2. Aggregate labor markets clear as in (10)

3. Workers make optimal decisions about where to live, highlighted by (3)

4. Workers make optimal consumption decisions

5. Local price indices are given by (3)
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B Inversion

B.1 Inversion

The goal of the inversion is to rationalize observedwi, ℓi, τij as an equilibrium of the model given parameters
σ, ξ, θ. The inversion is done in a two-step process. First, we recover productivity to rationalize the observed
wages and population, then given those productivites, we construct price indices and invert the population
equation to recover amenities.

Recovering productivity We invert productivities using goods market clearing. In particular, we start with,

wiℓi =
∑
j

pijcij

This can be rewritten as,

wiℓi =
∑
j

pij

(
pij
Pj

)−σ wj

Pj
Lj

Simplifying further,

wiℓi =
∑
j

(
τij

wi
Zi

)1−σ(∑
k

(
τkj

wk
Ak

)1−σ
)wjℓj

Which can be written as,

Zi = w
σ

σ−1

i ℓ
1

σ−1

i

∑
j

(τij)
1−σ(∑

k

(
τkj

wk
Zk

)1−σ
)wjℓj


1

1−σ

,

which is a fixed point equation in Ai. We use this form iterations,

Z
(n+1)
i = w

σ
σ−1

i ℓ
1

σ−1

i


∑
j

(τij)
1−σ(∑

k

(
τkj

wk

Z
(n)
k

)1−σ
)wjℓj


1

1−σ

and Z
(n)
i → Zi.

Recovering amenities

The population equation,

ℓi ∝
(
Ai(wi/Pi)

ξ
)θ

allows us to recover the Ais up to arbitrary scale, provided we construct the Pi terms using the recovered
productivities.
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Figure A1: Estimated ECS distribution across CMIP5 and CMIP6 models.

B.2 Calibration

Parameter Value Description Source
ξ 0.5 Concavity of utility Havraneka et al. (2015)
σ 3.8 Armington trade elasticity Bajzik et al. (2020)
θ̃ 2 Migration elasticity Cruz and Rossi-Hansberg (2021)
λ̃ -0.3 Congestion elasticity Desmet et al. (2018)
θ 1.25 Fréchet dispersion −(λ̃− 1/θ̃)−1

Table A1: Model parameters and their sources
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