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Abstract

Projected temperature changes are variable in both their magnitude and geography. This paper stud-
ies how nonlinear damages and general equilibrium forces filter this climate risk across time and space.
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derive analytical first- and second-order welfare approximations that decompose the mean and variance
of welfare changes into damage function, trade, and migration components. Using an ensemble of tem-
perature projections from CMIP-6 and an empirically estimated damage function, we show that climate
change-induced welfare risk is large. The standard deviation of country-level projected welfare loss across
temperature projections is on average over 8% – compared to an average welfare loss of 13% – and is spa-
tially unequal. Climate risk inequality is half as large as global income inequality. We show that spatial
linkages reshape not only the level of climate damages, but also the spatial distribution of climate risk:
accounting for trade and migration can reduce the standard deviation of welfare changes by up to 40% in
low-income, internationally integrated nations that can diversify their exposure to local shocks.
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1 Introduction

There is substantial uncertainty in both the path of global warming over the next century and its spatial

distribution.1 In a high-emissions scenario, state-of-the-art general circulation models (GCMs) from the

CMIP-6 ensemble predict between 2 to 5.25◦C of warming over populated areas depending on the model

used, relative to 2019 (Figure 1, Panel A). However, temperature projections vary widely across regions,

with some countries facing a much broader range of projected temperature outcomes across climate models

than others (Figure 1, Panels B-D). In this paper, we study how nonlinear damages and the forces of economic

geography filter this spatially uneven climate risk, and how accounting for climate risk affects the precision

and mean estimates of the economic cost of climate change.

Statistical and economic models of climate damages imply nonlinear relationships between climate shocks

and economic outcomes. Statistical models introduce damages that are nonlinear in weather shocks by es-

timating dynamically persistent state-dependent marginal effects in an environment where the state–average

temperature–is itself time-varying. Economic models of climate change imply damages have nonlinear ef-

fects as agents are able to adapt to climate change. Because of these nonlinearities, differences in both the

magnitude and variability of projected climate change can substantially affect the variance and point estimate

of expected welfare. Moreover, since the extent of climate risk differs sharply across regions, accurately eval-

uating the welfare effects of climate change requires accounting for both the spatial distribution of climate

risk and its spatiotemporal propagation. Regions have the potential to adapt to changes in climate through

trade and migration, which connect them through the global goods and labor markets and shape how local

shocks propagate across space.

Existing literature has made substantial progress in understanding how these adaptation forces shape the cost

of climate change (for reviews, see, e.g., Desmet and Rossi-Hansberg, 2024; Balboni and Shapiro, 2025).

Dynamic spatial models show that trade and migration allow economies to adapt by reallocating activity

toward cooler or more productive regions, while also propagating local shocks through goods and labor mar-

kets. We study how these forces shape climate risk: the variance of welfare outcomes under different climate
1As emphasized by Knight (1921), uncertainty describes situations of ambiguity or ignorance about those probabilities them-

selves. In practice, we treat this intermodel uncertainty as risk: randomness with a known or estimable probability distribution. Our
analysis concerns climate risk—the welfare implications of stochastic temperature shocks with empirically estimated distributions
derived from global circulation models—rather than Knightian uncertainty over the true climate process.
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Figure 1: Projected warming across climate models.
Panel A shows the change in global population-weighted annual average near-surface temperature since 2019
across CMIP6 models under the SSP5–8.5 scenario. Panel B reports the corresponding changes in annual
average temperature for selected countries. Panel C maps the spatial distribution of the standard deviation
in projected warming by 2080 across CMIP models. Panel D plots the standard deviation of country-level
warming across models as a function of baseline temperature, showing that colder countries tend to have
greater variability in projected warming.

projections. We ask two questions. First, how do global adaptation forces—trade and migration—affect the

variance of welfare outcomes due to climate risk, and how do these mechanisms vary across countries? Sec-

ond, how do nonlinear damages and their spatial propagation influence the expected welfare costs of climate

change, relative projections that evaluate welfare given a mean forecast of future temperature?

We find that general equilibrium forces have large and heterogeneous effects on welfare risk. In our simu-

lations, the poorest and most globally integrated economies experience the largest gains from incorporating

these adaptation margins. Trade and migration reduce the standard deviation in welfare changes by 2080 (un-

der the SPS5-8.5 emissions trajectory) by as much as 40 percent. Access to foreign markets and migration

opportunities allows these economies to diversify exposure to local climate shocks. By contrast, in relatively

more closed economies, where domestic conditions dominate welfare fluctuations, trade and migration play

a much smaller stabilizing role; instead, risk amplification and attenuation through the damage function dom-
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inate. This pattern mirrors their effect on average welfare costs: general equilibrium forces do not amplify

damages but rather buffer them, allowing smaller economies to better absorb climate shocks through adap-

tation and reallocation. Together, these results show that global integration not only mitigates the expected

cost of climate change but also redistributes and dampens the associated risk, generating substantial spatial

heterogeneity in both the level and volatility of welfare losses.

A thorough quantitative analysis of the questions posed in this paper requires contributions along two key

dimensions. First, we estimate a dynamic, non-linear damage function that maps changes in temperature

into changes in model-implied productivity. This function anchors the link between physical climate shocks

and the economic fundamentals of our model. We construct an annual panel of country-level data com-

bining observed temperature realizations with model-implied productivity measures, and use it to estimate

the causal relationships between temperature fluctuations and economic productivity. Following the climate

impacts literature, we employ a flexible functional form that allows for non-linear and dynamic responses

(Burke et al., 2015), building on recent approaches that trace the delayed effects of climate shocks on eco-

nomic performance (Nath et al., 2024; Bilal and Känzig, 2024). Specifically, we incorporate distributed lags

of temperature to capture adjustment dynamics over the subsequent decade. Because we estimate this rela-

tionship on a long panel, we are able to disentangle persistent effects weather shocks, while controlling for

global trends and country fixed effects. This produces a rich empirical mapping from temperature to produc-

tivity that can be embedded directly into our quantitative model. Combining this estimated damage function

with stochastic temperature projections from CMIP climate models enables us to simulate country-specific

productivity distributions across temperature projections, and to propagate productivity shocks through the

model’s equilibrium to compute real income changes.

Second, we develop a tractable dynamic spatial model that links countries through trade and migration,

which act as both margins of adaptation—allowing agents to adjust to local productivity shocks—and as

mechanisms of propagation, transmitting weather shocks across space (via trade) and time (via migration).

The model captures the key theoretical forces of adaptation and propagation while remaining analytically

tractable and computationally efficient, allowing us to simulate numerous stochastic climate realizations and

trace their welfare implications globally.

Within this environment, we derive a first-order welfare approximation (reminiscent of the results in Klein-
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man et al., 2024a; Kleinman et al., 2024b) for welfare changes induced by small productivity shocks that

incorporates general equilibrium feedback, decomposed according to the contribution of direct impacts (i.e.,

through the damage function) versus those coming through trade and migration. We then extend this to a

second-order approximation that captures curvature in the welfare function arising from nonlinear damages

and higher-order GE effects. These results yield a set of transparent analytical decompositions that separate

welfare changes into direct, trade, and migration components—each of which can be computed empirically

and compared across countries.

This framework allows us to trace how the impact of climate shocks accumulates over time and how adap-

tation and propagation interact to shape the distribution of welfare risk. Using country-specific temperature

projections from the CMIP ensemble, we simulate global welfare trajectories and decompose them into their

underlying channels. Together, these elements provide a unified, empirically grounded framework that con-

nects climate projection variability to the geography of welfare risk.

We then use our framework to decompose both the expected cost and the variance of welfare into direct and

general equilibrium (GE) components for every country in the world. GE forces have highly heterogeneous

implications for welfare. In much of sub-Saharan Africa and South and Southeast Asia, trade and migration

attenuate direct welfare losses by reallocating resources toward less-affected regions. In other areas, GE

forces can instead exacerbate losses through adverse terms-of-trade effects—when local productivity declines

relative to trading partners—or through migration inflows and outflows that redistribute exposure to shocks.

These contrasting channels generate substantial spatial heterogeneity in the global geography of climate costs.

When we turn to welfare variance, we find that GE forces dampen volatility nearly everywhere, but with

sharp cross-country differences. Countries that are highly integrated in global trade experience the largest

stabilizing gains, with welfare variance falling by up to 25 percent in some smaller economies such as Chad

and Greece. In contrast, for larger economies such as the United States or Russia, GE channels have little

effect on welfare volatility because domestic shocks dominate. These results carry clear policy implications:

openness to trade and migration provides a form of insurance against local climate shocks, helping to stabilize

welfare under climate risk.

Related literature A large body of research has used reduced-form estimates of the causal relationship
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between temperature and GDP to project the global economic consequences of climate change (see Hsiang,

2025; Lemoine et al., 2025, for recent reviews). This literature consistently finds a non-linear relationship

between temperature and output (Burke et al., 2015; Kalkuhl and Wenz, 2020; Nath et al., 2024): warming

tends to raise productivity in cold countries but reduce it in hot ones, with most studies identifying an optimal

average temperature of around 14◦C. Studies differ on persistence: while Burke et al. (2015) link temperature

to GDP growth—implying compounding long-run effects—others argue that only changes in temperature

affect growth, with impacts that can persist for a decade or more (Nath et al., 2024; Bilal and Känzig, 2024).

In this paper, we adopt an estimation strategy that accommodates both non-linear impacts and persistent—but

not permanent—effects of a sustained change in temperature.

A central challenge in this literature is the large variance surrounding projected economic damages from

climate change (Newell et al., 2021). For instance, Burke et al. (2015) report a 95% confidence interval

for global GDP losses by 2100 that ranges from –60% to +50%. Importantly, this wide range reflects only

statistical uncertainty in the estimated damage function, neglecting the role of climate risk. Subsequent

work—often outside the core GDP–climate literature—has expanded this analysis to include uncertainty

about the future climate, typically by bootstrapping damage estimates across ensembles of climate model

realizations. For example, Carleton et al. (2022) account for both damage-function and climate risk in their

projections of climate-induced mortality, finding that the two sources contribute roughly equally to variance

in 2100 outcomes. Similarly, Burke et al. (2023) show that uncertainty in future climate trajectories adds a

comparable magnitude of uncertainty to Social Cost of Carbon calculations to that arising from estimation

of the damage function. A smaller emerging literature decomposes other sources of uncertainty in projected

impacts: Schwarzwald and Lenssen (2022) highlights the role of internal climate variability—differences

across realizations within a single climate model—which we do not explicitly analyze in this paper.

A key limitation of these reduced form studies is that they treat economies as spatially isolated, neglecting

how economic geography forces both create spatial spillovers but also the ability for local adaptation through

trade and migration. As GDP is itself an endogenous outcome influenced by cross-border interactions, omit-

ting these spatial linkages may overstate projected welfare damages and their variance, and obscure how

global adaptation could redistribute and reduce climate risk (Zappala, 2024; Bilal and Känzig, 2024).

This paper contributes to the growing literature on how trade and migration shape the welfare consequences of
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climate change. Recent research has expanded classic integrated assessment models (IAMs) to capture spatial

heterogeneity, trade, and migration, giving rise to spatial integrated assessment models (S-IAMs) that exam-

ine how geography influences both the level and distribution of climate damages. Desmet and Rossi-Hansberg

(2015) formalized dynamic spatial equilibrium frameworks showing that spatial frictions—especially in trade

and migration—critically determine aggregate and local climate costs. Subsequent research has broadened

this agenda along several dimensions. Desmet et al. (2021) evaluate probabilistic projections of local sea-

level rise in a dynamic spatial model. Conte et al. (2021) study how warming reshapes global patterns of in-

dustrial specialization, while Cruz and Rossi-Hansberg (2024) develop a global S-IAM with endogenous mi-

gration, innovation, and demographic dynamics. Balboni (2025) and Rudik et al. (2022) analyze temperature

and flooding impacts in models with forward-looking migration, and Krusell and Smith Jr (2022) emphasize

forward-looking investment and savings as alternative adaptation channels. Bilal and Rossi-Hansberg (2023)

highlight how anticipation of extreme events, spatial capital adjustment, and externalities affect long-run out-

comes. Dingel and Meng (2025) show that spatially correlated temperature shocks can amplify inequality

by altering the gains from trade. The interaction between environmental policy and geography has also been

explored (Acemoglu et al., 2016; Conte et al., Forthcoming).

Despite these advances, most dynamic spatial analyses evaluate deterministic climate scenarios, abstracting

from variability across temperature paths. A notable exception is Desmet et al. (2021), who examine het-

erogeneous flooding risks under alternative Representative Concentration Pathways (RCPs). In contrast, we

incorporate stochastic temperature dynamics into a spatial general equilibrium framework with trade and

migration. Importantly, we derive analytical first- and second-order welfare decompositions that isolate how

both the estimated damage function and general equilibrium forces shape both the level and variance of

welfare under climate risk across time and space.

Finally, this paper is also related to recent work that develops decompositions of welfare exposure to shocks

in quantitative spatial models. Kleinman et al. (2024a) derive ‘friend–enemy’ matrices that characterize the

first-order elasticity of real income to productivity changes across countries in a trade model. Kleinman et al.

(2024b) and Donald et al. (2025) extend these sufficient statistics to spatial settings with migration. We build

on this linear-exposure logic but go further by deriving both first- and second-order welfare approximations

that quantify not only the expected welfare cost but also the variance and curvature components arising from

6



adaptation and propagation. This allows us to isolate how trade and migration separately shape both the

mean and dispersion of welfare impacts across regions.

The rest of this paper is organized as follows. In Section 2 we describe our dynamic spatial equilibrium

model, which allows us to characterize how productivity shocks caused by changes in temperature propagate

across space due to trade and migration. In Section 3 we develop a framework to decompose how projected

welfare, and its uncertainty, depends on direct productivity damages, trade, and migration. In Section 4 we

describe how we estimate model parameters. In Section 5, we present our results. We show projections and

decompositions of the welfare impacts of climate change, and its variance. Finally, in Section 5, we conclude.

We relegate many of the model and quantification details to the Appendix.

2 Model

In this section, we develop a simple dynamic spatial equilibrium model in which countries are linked through

trade and migration. The model provides a tractable framework to study how shocks to fundamentals propa-

gate across time and space through these two margins of adjustment. The environment extends the canonical

Armington (Anderson, 1979) structure to a dynamic setting in which agents’ migration decisions generate

intertemporal spillovers. The world is populated by measure L̄ workers dispersed across all countries, each

of whom is endowed with one unit of labor that they supply inelastically to their nation’s final goods firm.

There are N countries indexed by o, d ∈ {1, . . . , N}. Time is discrete and indexed by t. The timing within

each period is as follows:

1. Workers ‘wake up’ in origin country o at the beginning of period t, and make a one-period ahead

migration decision to destination country d.

2. Populations update according to realized migration decisions.

3. Production, trade, and consumption take place in each destination.

Workers migrate across regions paying a bilateral migration cost µod expressed in terms of utility. Trade is

costly and subject to standard iceberg trading costs τod, and there is no ability for agents to save.
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2.1 Workers

Utility and Consumption. Conditional on being in a country d, workers supply one unit of labor inelastically

to the country’s representative firm and earn wagewd,t. They consume a basket of goods sourced from nations

o, and have CES preferences over national varieties, and enjoy country-specific amenities Ad,t. The value of

residing in country d is given by

Vd,t = max
{Cod,t}

Ad,t

(∑
o

C
σ−1
σ

od,t

) σ
σ−1

subject to
∑
o

pod,tCod,t ≤ wd,t,

where pod,t = τodpo,t is the price of the variety from country o adjusted for the iceberg trading cost between

countries. Expenditure minimization implies the standard CES price index

Pd,t =

(∑
o

p1−σ
od,t

) 1
1−σ

.

Demand for each imported variety can be written as

Cod,t =

(
pod,t
Pd,t

)−σ wd,t

Pd,t
. (1)

Migration. In each period t, there is a continuum of workers indexed by ω residing in origin o of measure

Lo,t−1. Each worker decides where to live and work in period t. Workers draw idiosyncratic preference

shocks ϵod(ω) that are distributed Fréchet (1, ε) iid across countries. Each worker solves

max
d

{
Vdt

µod
ϵodt(ω)

}
, (2)

where µod captures bilateral migration costs of moving from o to d. The resulting migration probabilities of

moving from o to d satisfy

Mod,t =
(Vd,t/µod)

ε∑
d′(Vd′,t/µod′)ε

, (3)
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and ex–ante expected welfare for workers in o is

Wot ∝

(∑
d

(Vdt/µod)
ε

)1/ε

. (4)

2.2 Technology and Firms

Each country produces a differentiated Armington variety using labor as the only factor of production. The

representative firm in country d has linear technology using productivity Zd,t,

Yd,t = Zd,tLd,t.

Perfectly competitive firms take wages wd,t and prices pd,t as given, and solve

max
Ld,t

pd,tZd,tLd,t − wd,tLd,t.

Since labor is the only factor, wages equal the value of marginal product such that

wd,t = pd,tZd,t. (5)

2.3 Market Clearing

Output market clearing requires that total production equals global demand for each variety such that

Yo,t =
∑
d

τodCod,tLd,t. (6)

The aggregate labor market must also clear. The initial population distribution is such that
∑

o Lo,0 = L̄, and

there is no population growth. Given migration probabilities in (3), the population in each country evolves

according to

Ld,t =
∑
o

Mod,tLo,t−1. (7)
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2.4 Equilibrium

We are now ready to define the notion of equilibrium. We first define a period-t specific equilibrium, before

defining a dynamic equilibrium.

Definition 2.1 (Period-t Equilibrium). Given fundamentals {Ao,t, Zo,t}, elasticities (ε, σ), iceberg trade

costs {τod}, and initial populations {Lo,t−1}, a period-t equilibrium is a set of wages {wo,t}, prices {po,t},

consumption cod,t, and population distribution {Lo,t} such that:

1. Workers choose consumption optimally, satisfying equation (1).

2. Firms choose labor inputs to maximize profits, and wages satisfy equation (5).

3. Goods markets clear, satisfying equation (6).

4. The population distribution across countries satisfies equation (7).

Definition 2.2 (Dynamic Equilibrium). Given sequences of fundamentals {Ao,t, Zo,t}∞t=0 and an initial pop-

ulation distribution {Lo,0}, a dynamic equilibrium is a sequence {po,t, wo,t, Lo,t}∞t=0 such that each period t

constitutes a period-t equilibrium and the population evolves according to (7).

A stationary equilibrium corresponds to a population distribution in which Lo,t = Lo,t−1 for all i.2

2.5 Discussion

The model captures how spatial adjustment to shocks unfolds through contemporaneous trade and migra-

tion decisions. Each period’s allocation reflects current fundamentals: workers respond to observed wages,

prices, and amenities. This static behavior generates a dynamic sequence of equilibria through the law of

motion for populations—today’s realized distribution of workers {Lo,t} becomes tomorrow’s inherited state.

Under this formulation, persistence in spatial outcomes arises from the gradual reallocation of workers across

space. Shocks to fundamentals—such as changes in productivity, amenities, or climate—affect wages and

prices contemporaneously, leading to new migration flows that redefine the distribution of population in
2That is, the equilibrium population vector is proportional to the dominant eigenvector of the migration matrix Mt.
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subsequent periods. Trade linkages transmit these shocks across locations within a period, while migration

links outcomes across periods.

3 Welfare Decompositions

This section summarizes how trade and migration shape the propagation of shocks into welfare. We build

four components: (i) a first–order welfare decomposition for productivity shocks; (ii) an analogous result

for (initial) population shocks; (iii) a dynamic accumulation result that organizes propagation over time; and

(iv) variance and Jensen (curvature) decompositions that map uncertainty in fundamentals into uncertainty

in welfare.

We let Wo,t denote ex ante welfare for agents starting period t in country o. This is the welfare for agents

before they receive idiosyncratic location specific preference shocks. Defining indirect utility as Vo,t =

Ao,t
wo,t

Po,t
∀o, (i.e, amenity-adjusted real income), country level welfare Wo,t takes the following form:3

Wo,t = Vo,t

(∑
d

µ−ε
od

(
Vd,t

Vo,t

)ε)1/ε

. (9)

3.1 First–order welfare impact of productivity shocks

We consider the effect, within period t, of a small productivity shocks d lnZt and initial population shocks

d lnLt−1 on period-t welfare for any country. Absent productivity shocks, there is mechanical convergence

to the steady state so that d lnLt−1 is nonzero.

The following proposition decomposes the first order changes to welfare as a consequence to shocks in pro-

ductivity and starting population.

Proposition 1 (First–order decomposition). In any period-t equilibrium, the first-order change in the log
3When we discuss global welfare in any period t, we adopt a utilitarian aggregator. Namely,

Υt =
∑
o

Lo,t Wo,t, (8)
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welfare for any country o ∈ {1, · · · , N} can be written as,

d lnWt = (I+ T t−1 +Mt−1) d lnZt + Lt. (10)

where d lnZt is an N -dimensional vector of productivity shocks.

Proof. See Appendix (B.1).

We refer to I d lnZt as the direct, or damage function effect,T t−1 d lnZ as the trade effect, andMt−1 d lnZt+

Lt as the migration effect. These matrices are functions of trade, income, and migration shares. Dropping

time subscripting, the trade effect is given by,

T = (I−T⊤)AZ

while the migration multiplier on the shock is,

M = (M− I)AZ︸ ︷︷ ︸
migration option

+(M− I)(I−T⊤)AZ︸ ︷︷ ︸
trade-migration interaction

where the matrices T is the trade share matrix, and M is the migration matrices; i.e.,

Tod =

(
τod po
Pd

)1−σ

, Mod =

(
Vd/µod

Wo

)ε

,

and AZ maps productivity shocks into prices changes (d ln p = AZ d lnZ). Further,

Lt = M(I −T⊤)AL d lnL,

where AL maps initial-population shocks into price changes (d ln p = AL d lnL0). Both A-operators de-

pend on primitives and statistics of the state (the spatial distribution of population and productivity).4 The
4The relevant statistics of the state are given by the matrices (L,M,T,S). Defining,

Q =
(
σI− S− (σ − 1)ST⊤

)−1

(S− I)

to be the pass-through matrix of endowment shocks to prices, where Sod = Tod
wdLd
woLo

, the price effect in our model with migration
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decomposition illustrates how shocks to fundamental productivity interact with the forces of economic ge-

ography to shape welfare outcomes.

The direct effect, d lnZt is read off the damage function. A local productivity shock immediately changes

real income in the affected region, holding prices and migration patterns fixed. The trade effect captures

how terms of trade adjust to the full vector of productivity shocks. Through international trade, each region’s

welfare depends its productivity relative to those of its trading partners. All else equal, negative productivity

shocks can improve a nation’s terms-of-trade as the price of its export appreciates, changing real consumption

possibilities. This is the mechanism through which trade acts as a form of adaptation. Quantitatively, the

strength of this adaptation mechanism depends on how a nation’s productivity changes relative to those its

trading partners.

The term captures the migration option effect. As agents can relocate across regions, a productivity shock

elsewhere changes the relative attractiveness of destinations. Agents who stay enjoy real income changes

from emigration, and a positively selected on their preference shock. For residents of origin o, higher pro-

ductivity in d increases the option value of migrating there, even if they ultimately stay, since equilibrium

migration probabilitiesMod depend on relative utilities across all destinations. The fourth term represents the

interaction effect between trade and migration. Conditional on migration responses, changes in produc-

tivity elsewhere alter both where individuals move and how potential migration destinations’ terms-of-trade

adjust. Thus, the gains from mobility depend not only on the dispersion of productivities but also on the

geography of trade costs and price adjustment across destinations. Finally, the term Lt in the decomposition

captures welfare gains from the population distribution converging towards the steady state.

is,
AZ =

(
I−Qϵ(I− L⊤M)(I−T⊤)

)−1

Q
(
I+ ϵ(I− L⊤M)

)
and prices respond to population shocks according to,

AL = (I−Q)−1 QL⊤

where Lod is the share of persons in destination d who originated in o.
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Using this decomposition, we can trace how the effects of productivity shocks accumulate over time.

lnWt − lnW0 ≈
t∑

n=1

d lnWn

=
t∑

n=1

(I+ T n−1 +Mn−1) d lnZn + Lt,

where T n−1 captures the propagation of shocks through trade at time n, Mn−1 captures migration and

migration–trade interaction effects, and Lt summarizes the population convergence effect.

This expression emphasizes that the total welfare change at any date reflects the cumulative history of produc-

tivity shocks weighted by the structure of trade and migration linkages in previous periods. Trade linkages

propagate shocks contemporaneously across space, while migration linkages propagate them intertemporally

across periods. The term Lt captures additional adjustment arising from gradual reallocation of population,

which can either amplify or dampen past shocks depending on how migration reshapes exposure to produc-

tivity across space.

3.2 Welfare curvature: second order effects

We now investigate the curvature of the welfare function, which shapes how general equilibrium forces can

amplify or attenuate climate risk. Moreover, the second derivative of the welfare function informs us about the

magnitude of the correction we must make to the expected welfare loss when integrating over the distribution

of future climate, instead of evaluating welfare along the mean trajectory.

Within a given period t, the second–order response of welfare to productivity shocks d lnZt is given by the

following proposition.

Proposition 2 (Second–order welfare decomposition). In any period–t equilibrium, the second–order change
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in log welfare for any country o ∈ {1, . . . , N} is

d2 lnWo = (σ − 1)VarT·d(d ln po)︸ ︷︷ ︸
trade adaptation

+ εVarMo·(d lnVd/Vo)︸ ︷︷ ︸
migration adaptation

+
∑
od

Mod

(
d2 lnVd/Vo

)
−
∑
o

Tod

(
d2 ln po/pd

)
︸ ︷︷ ︸

second–order price effects

.

Proof. See Appendix B.4.

Standard spatial models often evaluate welfare at the expected path of fundamentals, computing lnW(E[Zt]).

However, when welfare is nonlinear in productivity—as is the case once trade and migration linkages create

convexities—the expected welfare loss across climate realizations, E[lnWt], can differ substantially from

the welfare computed at expected fundamentals. This distinction follows from Jensen’s inequality, which

states that for any function f(·) and random variable x, f(E[x]) ≷ E[f(x)] depending on whether f(·) is

either convex or concave. Applied to welfare, this implies that the bias from failing to account for climate

risk depends on,

Ek

[
d lnW(k)

t

]
− d lnWt (Ek[d lnZt]) ≈

1

2
d2 lnWt ×Var

(
d lnZ

(k)
t

)

depends on whether welfare is locally convex or concave in productivity. In our context, we are interested in

what drives the difference between these two objects. We can use the second–order decomposition of welfare

to characterize the shape of this relationship.

The second–order terms capture how dispersion in local prices and migration returns translates into curvature

in welfare. Trade adaptation makes the welfare function more convex: when productivity shocks induce

price dispersion across trading partners, trade allows countries to substitute toward cheaper imports, rais-

ing welfare through within–period reallocation. A higher elasticity of substitution (σ) amplifies this effect,

reflecting stronger risk–sharing and a greater capacity to smooth localized shocks. Migration adaptation

parallels this mechanism across space. When migration frictions are low (high ε), workers can reallocate

toward destinations where real incomes rise, yielding welfare gains from the cross–sectional variance in

destination–specific returns.
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Taken together, trade and migration adaptation make the welfare function more nonlinear in fundamentals:

by linking regions through prices and mobility, they transform local shocks into convex welfare responses.

Finally, the residual term captures higher–order general–equilibrium effects that reflect feedback from ex-

penditure and labor reallocation into local prices. Together, these components quantify how the economy’s

spatial margins of adjustment shape not only the mean but also the volatility and curvature of welfare re-

sponses to shocks.

3.3 Mean effects and variance decomposition

This framework allows us to decompose the sources of welfare change into their underlying propagation

channels. For a sequence of shocks {d lnZ(k)
t }—along a certain simulated climate or productivity paths

(k)—the contribution of each channel to cumulative welfare changes can be written as:

Direct role(k)t =

∑t
n=1 d lnZ

(k)
n

lnWt − lnW0
,

Trade role(k)t =

∑t
n=1 T n−1d lnZ

(k)
n

lnWt − lnW0
,

Migration role(k)t =

∑t
n=1Mn−1d lnZ

(k)
n + L̂t

lnWt − lnW0
.

These expressions quantify the relative importance of each mechanism in shaping cumulative welfare changes.

The direct term isolates the effect of own-country productivity shocks. The trade term measures how expo-

sure through import and export linkages transmits foreign shocks. The migration term captures how the

reallocation of workers, together with induced changes in population weights and option values (the L̂t com-

ponent), contributes to global adjustment.

Having established how trade and migration shape the mean response of welfare to shocks, we now examine

how they affect the variance of welfare across climate realizations (k). For each time t, we decompose the
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contribution of direct, trade, and migration channels to the cross–chain variance of welfare as

Direct Sharet =
Vark

(∑t
n=1 d lnZ

(k)
n

)
Vark(lnWt − lnW0)

,

Trade Sharet =
Vark

(∑t
n=1(I+ T (k)

n−1) d lnZ
(k)
n

)
−Vark

(∑t
n=1 d lnZ

(k)
n

)
Vark(lnWt − lnW0)

,

Migration Sharet =
Vark

(∑t
n=1(I+M(k)

n−1) d lnZ
(k)
n

)
−Vark

(∑t
n=1 d lnZ

(k)
n

)
Vark(lnWt − lnW0)

.

The residual share captures interaction effects and the covariance structure arising from serial and spatial

autocorrelations.

The direct share measures the portion of welfare variance that would arise in the absence of any trade or

migration responses—that is, the propagation of uncertainty purely through shocks to local productivity. In

isolation, this accounts for all variance in a world of autarky and immobile labor.

Trade and migration, by contrast, reshape how uncertainty transmits across space. Trade connects countries

through their price indices: if a volatile region trades with more stable partners, international trade smooths

welfare by diversifying consumption baskets and dampening local volatility. Conversely, when a stable region

trades extensively with highly uncertain partners, it imports volatility through fluctuations in foreign prices.

Migration operates analogously through the reallocation of workers. When migration frictions are low, work-

ers can relocate away from volatile or adversely affected regions toward more stable ones, attenuating welfare

dispersion. However, when migration primarily links countries with correlated or volatile fundamentals, mo-

bility can instead transmit instability across borders.

As such, whether the forces of economic geography in trade and migration amplify or attenuate welfare

variance is ultimately an empirical question.
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4 Estimation

4.1 Data

GDP data We obtain estimates of GDP per capita (GDP-PC) from the World Bank’s World Development

indicators (WDI) database, expressed in constant 2015 US dollars. These data have been widely used in

studies that project the GDP consequences of climate change (e.g., Burke et al., 2015; Nath et al., 2024). Our

dataset forms an unbalanced panel covering the period 1960–2019; we exclude observations beyond 2019 to

avoid distortions associated with the COVID-19 pandemic. Among the 199 countries in the dataset, 87 have

complete GDP-PC coverage for the entire 1960–2019 period, while the remaining countries exhibit missing

values in early years (see Appendix Figure A1 for details on data availability by country). The WDI also

provides us with country-year level population estimates.

Historical temperatures We match these GDP data with temperature data obtained from the ERA5 dataset

(Muñoz-Sabater et al., 2021). ERA5 provides daily, grid-cell level temperature and precipitation estimates,

which we population weight using gridded population estimates, before aggregating to the country-year

level.5

Trade and migration data We use bilateral trade flows, expressed in nominal dollars, for years 2000-2016

from the U.S. Gravity Portal (Gurevich and Herman, 2018). For historical bilateral migration flows, we

rely on those from Abel and Cohen (2022), who use demographic accounting methods to recover bilateral

migration flows in 1990,1995,2005, and 2010.

CMIP projections We use 35 CMIP-6 projections for the RCP 8.5 forcing scenario made available through

the Copernicus website.6 We aggregate CMIP-6 projections to the country level by population-weighting

gridcell level estimates.7

5Populations weights are time invariant, and calculated using the Gridded Population fo the World dataset, available here: https:
//sedac.ciesin.columbia.edu/data/collection/gpw-v4

6See: https://cds.climate.copernicus.eu/datasets/projections-cmip6.
7We note that CMIPs reflect ‘ensembles of opportunity’ (Rasmussen et al., 2016): they are sampled from participating GCMs

and do not align with less granular forecasts like MAGICC (Model for the Assessment of Greenhouse Gas Induced Climate Change,
a ‘simple’ GCM). One approach to align granular CMIP uncertainty with estimates of aggregate uncertainty is to develop surrogate
models by resampling from the CMIP distribution (as in Carleton et al., 2022; Tran-Anh and Ngo-Duc, 2024) or estimating and
drawing from the CMIP DGP, which we aim to do in future work.
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4.2 Model estimation and calibration

We set σ−1 = 4 following Simonovska and Waugh (2014) and set ϵ = 2 following Cruz and Rossi-Hansberg

(2024).

Estimating spatial frictions To estimate τod and µod, we follow the ‘covariates-based approach’ of Dingel

and Tintelnot (2025). That is, we parameterize our spatial frictions as a function of covariates. We do this to

avoid overfitting estimates of τod and µod on noisy trade and migration flows Many trade and migration flows

in the data are zero. Subsequently, fitting trade and migration costs to exactly rationalize historical flows as

a model equilibrium would generate infinite trade or migration costs for some country pairs. By smoothing

the data with a low rank approximation to the trade and migration costs, we allow for trade and migration

flows to occur in counterfactuals that are not seen in historical data.

To estimate our spatial frictions, we use the model’s gravity regressions for trade and migration flows,

Modt = exp (−ϵ lnµodt + ξot + ξdt)

Todt = exp (−(σ − 1) ln τodt + χot + χdt)

(11)

We treat these as estimating equations in which we supposeµ−ϵ
odt = exp(ΓXod)uodt and τ1−σ

odt = exp(ΛXod)vodt

where E [uodt | ξot, ξdt, Xod] = E [vodt | ξot, ξdt, Xod] = 1. This allows us to exchange τ1−σ
odt and µ−ϵ

odt for

exp(ΓXod) and exp(ΛXod) and estimate Equations (11) using a Poisson pseudo-maximum likelihood es-

timator with high-dimensional fixed effects (Silva and Tenreyro, 2006; Correia et al., 2020).8 Inside Xod

we use the standard gravity regressors: log distance, and indicators for colonial history, legal and linguistic

similarities, and contiguity (Gurevich and Herman, 2018). Estimation results are available in Table A1.

Estimating the damage function We invert the model using our GDP and population data to recover Zot

8We enforce τoo = µoo = 1 by including 1(o = d) as a regressor in Xod and rescaling all elements of Γ̂ and Λ̂ accordingly.
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for each country-year in the data. 9 To estimate damages, we run regressions of the form,

∆ logZot =
L∑

ℓ=0

β0,ℓ∆Co,t−ℓ + β1,ℓ∆(Co,t−ℓ)
2 + ηo + ηt + δo · t+ eot (12)

where Ci,t is temperature and ∆ first-differences the data. The term ηt is a year fixed effect, ηo is a country-

fixed effect, and δo is a country specific quadratic time trend. The model estimates the causal effect of

temperature on productivity under the assumption that year-to-year fluctuations in temperature are as good

as randomly assigned, conditional on our time controls.

In this model, the impacts of a change in temperature are assumed to unfold over the L years following

the change. A large literature has examined the persistence of the impacts of temperature shocks, and we

follow here a recent literature (Nath et al., 2024; Bilal and Känzig, 2024) which assumes that the impacts of

temperature on growth rates are persistent, but not permanent.10 We use L = 10 lags to capture persistent

effects of temperature shocks on productivity.11

Estimating the damage function on the model primitives is similar to the estimation strategy in Cruz and

Rossi-Hansberg (2024). However, instead of estimating the parameters of a parametric damage function,

we allow for flexible, state-dependent, dynamic marginal effects. As we fit our model such that GDP per

capita, yot = potZot, Equation 12 can be thought of as a GDP-per-capita-temperature regression in which

we control for spatial spillovers parametrically using the structure of the model, as in Zappala (2024).12

Appendix Figure A2 compares our estimated productivity damage function to a damage function for raw

GDP-PC values, showing that damages estimated on model implied productivity leads to steeper damages.

Figure 2 presents the estimated relationship between temperature and productivity from Equation (12). Panel
9Recovering productivity (Zot) involves solving a system of nonlinear equations to separate out po, which is unobserved, from

data on GDP per person. Solving this system requires GDP and population data for every country in the trading network in every
year. However, some rows in the WDIs are missing. To interpolate missing GDP data in the WDIs, we fit a regression of log GDP
per capita on log population, and add country and year fixed effects, as well as country-specific slopes on time and US GDP per
capita. To construct the trade matrix historically, we use our estimated trade costs τod. We then invert the trade gravity equation to
recover a panel of Zot. We flag observations for which GDP per capita data in any country-year were interpolated and drop those
observations from the estimation sample. See Appendix C.1 for details.

10Allowing for the possibility of permanent growth effects of temperature increase, similar to Burke et al., 2015, would increase
our damage estimates

11Unlike Bilal and Känzig (2024), we only use local temperature as a regressor, and abstract from the effects of global temperature
on local productivity, which are absorbed in ηt, as global temperature shocks are difficult to identify from the limited time-series.

12To see this, note that our model implies that prices encode information about trade and migration links across space (see details
in Appendix ). By analyzing the effect of temperature on Z, rather than y, we are removing the influence of these factors.
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Figure 2: Damage function.
Panel A presents the estimated relationship between temperature and productivity from Equation (12), showing the
cumulative marginal effect of a one-degree increase in temperature as a function of annual average temperature. High-
lighted points indicate the estimated effects for a cold country (Russia), a temperate country (United States), and a
hot country (Nigeria). Panel B reports the cumulative impulse response functions for these countries, illustrating the
persistence and timing of productivity responses following a temperature shock. Panel C shows the projected paths
of productivity for the same countries, given their projected temperatures across general circulation models (GCMs)
in the CMIP6 ensemble. The black lines represent productivity changes associated with the mean projected warming
across climate models in each period.

A shows the cumulative marginal effect of a one-degree increase in temperature as a function of baseline

temperature. For relatively cold countries (such as Russia), where baseline temperatures lie below the esti-

mated optimum of around 11.5C, moderate warming increases productivity. In contrast, countries with hotter

baseline climates (such as Nigeria) experience substantial productivity losses as temperatures rise. Panel B

decomposes the cumulative marginal effect shown in Panel A for countries with baseline temperatures cor-

responding to those of Nigeria, the United States, and Russia in 2019. The effects are highly persistent and

grow rapidly for hot countries.

Constructing productivity shocks For each GCM (indexed by k), we accumulate the lagged marginal effects
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for a given path of temperature shocks, updating the climate system as follows,

C
(k)
o,t = C

(k)
o,t−1 +∆C

(k)
o,t , C

(k)
o,0 = Co,2019 ∀k

d lnZ
(k)
o,t =

H∑
ℓ=0

(
β̂0,ℓ + 2β̂1,ℓC

(k)
o,t−ℓ

)
∆C

(k)
o,t−ℓ.

This procedure generates paths of productivity shocks for each country under each climate forecast.

Figure 2 shows the estimated productivity shocks implied by the CMIP temperature trajectories for Russia,

USA, and Nigeria. Each line represents the evolution of productivity in a given country under a single

CMIP6 general circulation model (GCM), based on the estimated temperature–productivity relationship in

Equation (12). The dispersion across lines reflects uncertainty in future climate outcomes across GCMs,

while the black line corresponds to the mean projected productivity path implied by the ensemble-average

warming. Consistent with the damage function estimates, hot countries such as Nigeria experience persistent

and increasing productivity losses over time, temperate countries such as the United States face moderate

declines, and cold countries such as Russia exhibit gains under warming.

5 Results

5.1 The expected welfare impact of climate change

In Figure 3, we plot welfare loss by 2080 around the world (left panel). Consistent with a large literature

(see, e.g., Cruz and Rossi-Hansberg, 2024), we find welfare gains in northern nations and substantial welfare

losses in the global south. Appendix Figure A3 shows the aggregate welfare loss time series. Global welfare

loss in 2080 is on average -18.7%, though this ranges from -33.3% to -8.3%. Using global PPP-adjusted GDP

in 2019 as a dollar-denominated baseline (140.3 trillion USD), under the roughly 4.6 GtCO2 emitted from

2019-2080 in RCP 8.5, and using a 1% discount rate (as our model abstracts from growth) and assuming

damages end in 2080, this leads to a rough social cost of carbon (SCC) estimate of $90 per tCO2 – but the

range of this SCC estimate across different CMIP projections goes from $14 to $192. In Appendix Figure A4,

we plot the distribution of SCC estimates under different discount rates. The distribution of SCC estimates
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Figure 3: Left: welfare changes in 2080 in the mean RCP 8.5 forcing scenario. Right: the standard deviation
of welfare outcomes under different CMIP projections in 2080.

is right skew and wider at lower discount rates, as welfare uncertainty is backloaded; we are more uncertain

about damages in the future.

In the right panel, we show the standard deviation of welfare outcomes under different CMIP projections,

colored by whether welfare changes are positive or negative at baseline. Welfare variance is higher for

Northern Andean and Caribbean Rim nations. These nations are particularly vulnerable to ENSO events,

a possible source of forecast uncertainty across CMIP models. We additionally find substantial welfare

uncertainty for South and Central Asian countries. This uncertainty may stem from how forecast uncertainty

on how climate change affects the Tibetan Plateau – and therefore the Asian Monsoon. Gains in high-latitude

nations like Norway, Russia, and Mongolia, are also uncertain. Surprisingly, despite large predicted losses

in sub-Saharan Africa, there is little uncertainty in projected welfare losses for most of the sub-continent.

In sum, welfare loss uncertainty is not perfectly explained by the size of the average gains or losses. To make

this point clear, in the left panel of Figure 4 we show uncertainty in welfare loss against the mean welfare

loss. The relationship is somewhat U-shaped, but absolute welfare change is not totally predictive of welfare

loss variance. In the right panel, we plot welfare loss uncertainty against climate uncertainty, as given by

the standard deviation of projected warming across CMIP-6 models by 2080. While welfare uncertainty is

positively correlated with warming uncertainty, it is not perfectly predictive (R2 = 0.25), which suggests that

both the path of warming and nonlinear amplification through the damage function and general equilibrium

play important roles in shaping the precision of our welfare loss estimates.

23



Figure 4: Left: Standard deviation of welfare loss by 2080 (in percentage points) against the mean welfare
loss by 2080 across countries. Right: the same welfare uncertainty aginst the standard deviation of predicted
warming in 2080 across CMIP-6 participating GCMs. Points are sized by their initial population. Ecuador
and Iceland are omitted as they are outliers for welfare variance. Nigeria, USA, and Russia are highlighted.

We demonstrate the role trade and migration play in shaping expected welfare change in Figure 5. The left

panel shows the change in welfare attributable to these general equilibrium forces over space.13 There is

substantial spatial heterogeneity: in sub-Saharan Africa and South and Southeast Asia, trade and migration

attenuate the welfare loss from climate change implied by pure damages. Such countries suffer absolute pro-

ductivity losses, but their terms-of-trade improve, as their relative productivity declines as well: their trading

partners (Europe and China) face relatively small productivity changes from climate change. This gain also

operates through emigration: as their migration option value rises, these nations depopulate, reducing their

output, and subsequently putting upward pressure on the price of their exports on international markets.

The right panel of Figure 5 shows the role these forces play over time in three select countries. First, in Chad

(TCD) and Greece (GRC), direct productivity losses are offset by these trade and migration gains, though

in Greece, climate damages occur farther in the future than for Chad. This is because of the nonlinearity
13That is, it maps,

Ek

[
2080∑
t=1

(T t−1 +Mt−1) d lnZ
(k)
t + L(k)

t

]
.
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Figure 5: Left: the expected welfare impact of climate change in 2080 attributable to general equilibrium
forces. Right: a time-series decomposition of these welfare changes for Chad (TCD), Greece (GRC) and
Uruguay (URY).

of the damage function: local temperature must rise in Greece before the marginal effect of temperature

shocks diminish productivity. By contrast, in Uruguay (URY), damages immediately begin to accrue, and

general equilibrium forces amplify the welfare cost of climate change. Despite Uruguay suffering from

absolute productivity losses rising local temperatures, its regional trading partners (e.g., Brazil) suffer larger

climate damages. Consequently, Uruguay’s relative productivity improves, diminishing its terms-of-trade.

Moreover, Uruguay receives climate migrants from Brazil, further amplifying its welfare losses. Thus, our

model demonstrates the extent to which the spatial correlation of climate shocks are filtered through the trade

matrix is of first-order importance in projecting the welfare impact of climate change, a point made in Dingel

and Meng (2025).

5.2 Climate risk over time and space

However, general equilibrium forces matter beyond the first order: they can amplify or attenuate the variance

of climate shocks. In Figure 6, we plot the % change in the standard deviation of percent changes in welfare

by 2080 measured across CMIP-6 models when accounting for trade and migration in addition to productivity

shocks. In the left panel, we plot this across space: it is almost everywhere negative. General equilibrium

forces dampen welfare variance relative to the variance of productivity shocks implied by the estimated

damage function. Moreover, these general equilibrium forces play an important role in reducing welfare risk

in sub-Saharan Africa and Central and Southeast Asia, where shock variance is substantial due to intermodel

uncertainty in these regions. In the right panel, we plot the contribution to welfare variance (in squared
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Figure 6: Left: The percent change in the variance of welfare changes by 2080 attributable to general equi-
librium forces. Right: Decomposing the variance of welfare changes into direct (damage function), trade,
and migration, and residual components.

percentage points) from damage function risk, and how this is filtered by the trade and migration matrices.

In all three countries, general equilibrium forces play a sizable role in reducing climate risk over time.

In Figure 7, we whether the burden of climate risk is borne by the poorest nations today. While the standard

deviation of projected warming by 2080 is largest for some of the richest countries today (left panel), this

does not translate to lower welfare risk. Rather, we find a modest negative correlation between the level of

development and climate risk: a 10% increase in 2019 GDP per capita is associated with a 0.1 fall in the

standard deviation of projected warming by 2080.14

However, we do find that trade and adaptation matter most for some of the poorest regions in the world. In

the left panel of Figure 8, we plot the percent change in the standard deviation of welfare changes by 2080

against baseline log GDP per capita. We find that the reduction in climate risk due to trade and migration is

larger for poorer countries: a 1 log point decrease in log GDP per capita is associated with a 2 percentage

point reduction in climate risk due to general equilibrium forces (Appendix Table A2). Absent adaptation,

international inequality in climate risk, as measured by the Gini coefficient of the variance of log changes in

welfare by 2080 is about 40% as large as international income inequality (as measured by the Gini coefficient

for GDP per capita). Accounting for trade and migration reduces climate risk inequality by about 7 percentage

points.

However, the level of development is not the only predictor of the capacity for trade and migration to lower

climate risk. We additionally find that a country’s trade openness at baseline matters in shaping the ability
14This correlation is population-weighted; T -statistic> 7, R2 = 0.22.
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Figure 7: Left: standard deviation of degrees C of warming by 2080 across CMIP-6 models vs. log GDP/cap
in 2019. Right: standard deviation of % changes in welfare by 2080 under different CMIP-6 model temper-
ature forecasts vs. log GDP/cap. Small nations with large intermodel variation in projected warming like
Iceland are omitted.

for economic geography forces to attenuate climate risk.15 In the right panel of Figure 8, we show that it is in

open economies that the reduction in climate risk due to trade and migration is largest. These countries have

the largest capacity at baseline to diversify their exposure to climate risk. We find that a 1 log point change

in trade openness is associated with a 5 percentage point reduction in climate risk due to trade and migration

(see Appendix Table A2).

5.3 Jensen’s correction

As the model is highly nonlinear, both due to the nonlinearity of the quadratic damage function with persistent

effects and the structure of the model’s equilibrium, it is plausible that expected welfare changes when inte-

grating over future climate scenarios differ from the welfare changes computed using the mean temperature

forecast across models due to Jensen’s inequality.
15We measure trade openness as 1

2
Imports+Exports

GDP in 2019. We take this from the World Development Indicators’ NE.TRD.GNFS.ZS
series.
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Figure 8: Left: the % change in the standard deviation of % changes in welfare by 2080 attributable to GE
forces like trade and migration vs. log GDP/cap in 2019. Right: 2019 log GDP on the x-axis. In the left
panel, Bhutan, Finland, Faroe Islands, Greenland, Iceland are not shown. In the right panel, Djibouti, Hong
Kong, Ireland, Luxembourg, Malta, San Marino, and Singapore are not shown.

In the left panel of Figure 9, we plot the percentage point change adjustment to welfare changes by 2080 that

comes from integrating over CMIP-6 models, instead of filtering the ensemble mean through the model, that

is, we plot the Jensen’s correction JC,

JC2080 = Ek

[
lnW(k)

2080

]
− lnW2080

where lnW2080 is the projected change in welfare evaluated at the mean CMIP-6 model temperature forecast.

Using our linear decomposition, we are able to separate out the component of Jensen’s correction attributable

to the nonlinearity of the damage function from the nonlinearities from adaptation in the model, that is,

JC2080 = Ek

[
2080∑
t=0

d lnZ
(k)
t

]
−

2080∑
t=0

d lnZt︸ ︷︷ ︸
damage function nonlinearity

+ Ek

[
2080∑
t=0

(
T (k)

t−1 +M(k)
t−1

)
d lnZ

(k)
t

]
−

2080∑
t=0

(
T t−1 +Mt−1

)
d lnZt︸ ︷︷ ︸

general equilibrium adaptation nonlinearities

.
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Figure 9: Left: percentage point welfare change adjustment when accounting for Jensen’s inequality. Right:
the percentage point change in Jensen’s correction attributable to trade and migration.

The term Ek

[
d lnZ

(k)
t

]
̸= d lnZt because d lnZt is a nonlinear function of the climate state {C(k)

t }t. In

the right panel of Figure 9, we plot the component of Jensen’s correction attributable to general equilibrium

adaptation forces around the world. These are largest in sub-Saharan Africa, where adaptation forces play

an important role in shaping the concavity of the welfare function and attenuating expected welfare losses

when integrating over the distribution of future climate shocks.16

6 Conclusion

This paper develops a framework to understand how climate risk propagates through the global economy

and how both a nonlinear, dynamic damage function, coupled with general-equilibrium forces—trade and

migration—reshape both the expected cost and the variance of welfare under climate change. Motivated by

the observation that climate projections remain deeply uncertain and that damages are highly nonlinear, we

focus on how spatial linkages mediate not only the mean impact of warming but also the risk surrounding it.

While prior research has shown that trade and migration can reallocate activity in response to climate change,

we demonstrate that these same forces play a crucial role in redistributing and, in many cases, reducing

welfare risk across space.

We estimate a nonlinear, dynamic damage function that maps changes in temperature to model-implied pro-

ductivity. Using a long annual panel of country-level data, we exploit within-country temperature variation to
16In Appendix Figure A5 we plot this decomposition over time for six countries.
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identify both the immediate and persistent impacts of warming on productivity. Our flexible distributed-lag

specification allows for delayed responses, capturing persistent effects or local adaptation adjust productivity

over the subsequent decade. This empirical foundation generates a rich and robust mapping from temperature

to productivity that we embed directly into our quantified model, enabling stochastic simulations grounded

in observed economic responses.

We then build and quantify a tractable dynamic spatial model that connects countries through trade and

migration. These channels serve as margins of adaptation, allowing agents to reallocate resources in response

to climate shocks, and as mechanisms of propagation, transmitting those shocks across borders and over

time. The model incorporates risk in both the magnitude and geography of future warming by introducing

stochastic fundamentals that evolve according to the estimated damage process. Within this environment, we

derive analytical first- and second-order welfare approximations that decompose welfare changes into direct,

trade, and migration components. The first-order terms describe how mean welfare responds to expected

changes in productivity, while the second-order terms capture the curvature in welfare induced by nonlinear

damages and general equilibrium feedback. Together, these decompositions provide a clear and tractable

way to quantify how adaptation and exposure jointly shape the geography of climate risk.

Applying this framework globally, we decompose welfare outcomes into direct and general-equilibrium com-

ponents for every country in the world. Consistent with past work, we find that welfare loss from climate

change is most severe in poor, hot countries, while some rich, cold nations experience gains. Our first-order

welfare decomposition shows that in much of sub-Saharan Africa and South and Southeast Asia, trade and

migration attenuate direct welfare losses by facilitating reallocation toward less-affected regions. In other

parts of the world, however, these forces can amplify damages through adverse terms-of-trade effects (when

productivity falls relative to key trading partners) or migration flows that shift exposure across borders.

Examining climate risk, our results reveal a striking degree of spatial heterogeneity. Spatial climate risk

inequality is almost half as large as global income inequality, with the burden falling on low income nations.

Trade and migration substantially dampen welfare volatility almost everywhere, though to very different

degrees. Highly integrated, low-income economies experience the greatest reductions in welfare variance due

to trade and migration—up to 25–40 percent reductions in climate risk—compared to insular, higher-income

nations like United States or Russia, who see minimal reductions in climate risk through these channels.
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These patterns have direct policy implications. The benefits of global integration extend beyond traditional

gains from trade and migration—they also provide a form of insurance against climate risk. More open

economies are able to diversify exposure through international linkages, whereas closed economies remain

more vulnerable to domestic climate variability. The geography of integration thus determines not only the

expected cost of climate change but also the stability of welfare outcomes. Policies that facilitate smoother

trade and migration flows, or that promote diversified regional production networks, can therefore mitigate

both the mean and variance of global welfare losses.

Beyond the specific application to climate change, the framework developed in this paper can be used more

broadly to study a wide range of shocks in quantitative spatial models. The theory provides a clean and

general decomposition of welfare changes into direct, trade, and migration components, which together map

productivity shocks into welfare outcomes through clearly interpretable mechanisms. This structure allows

researchers to analyze how different types of shocks—such as technological innovation, policy interventions,

geopolitical disruptions, or supply-chain disturbances—propagate across space and shape welfare both on

average and its variance. In this sense, our model offers a flexible tool for studying how the geography

of global integration mediates the welfare consequences of any stochastic disturbance that affects regional

productivity.

Ultimately, this paper shows that exposure to climate risk is shaped as much by economic geography as by

the climate system itself. Global linkages reduce the welfare risk for countries around the world, some more

than others. The broader implication is that managing climate risk requires not only reducing emissions, but

also building the institutional and economic linkages that allow regions to adapt collectively in an uncertain

world.
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A Additional Tables and Figures

A.1 Data: descriptive plots
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Figure A1: Years available in World Bank GDP-PC data.
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A.2 Additional results

Figure A2: Comparison of damage function estimated on productivity to that estimated on GDP-PC.
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Figure A3: Global welfare loss lnΥt − lnΥ0 under different CMIP models.

Figure A4: Distribution of SCC estimates for different discount rates.
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Figure A5: Caption
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A.3 Additional Tables

(1) (2)
Trade flows Migration flows

Log distance -0.369 -1.009
(0.015) (0.065)

1(Colony of origin) 0.390 1.360
(0.050) (0.277)

1(Colony of destination) 0.310 1.231
(0.057) (0.266)

1(Common colonizer) 0.479 0.227
(0.036) (0.438)

1(Common legal origin) 0.045 -0.076
(0.040) (0.402)

1(Contiguous) 0.799 1.008
(0.027) (0.134)

1(Common language) 0.199 1.026
(0.018) (0.140)

1(Same country) 1.993 2.369
(0.134) (0.397)

1(Same region) 0.266 -0.064
(0.036) (0.135)

1(Both EU) -0.105 -0.090
(0.028) (0.297)

Pseudo R-squared 0.981 0.998
N obs. 716,334 225,570

Table A1: Gravity regressions of trade and migration flows on bilateral cost shifters.
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(1) (2) (3) (4) (5)
Log trade openness −5.402 −6.346 −5.347

(1.742) (1.483) (1.091)
Log GDP/cap 1.044 2.357 2.267

(0.575) (0.555) (0.545)
Temperature (2019, ◦C) −1.480 −1.359 −0.002

(0.220) (0.212) (0.180)
Std. Dev. Warming (2080) −25.788 −25.748 0.034

(4.110) (3.950) (3.111)
Observations 174 196 186 164 164
R2 0.061 0.016 0.345 0.479 0.397
Population weights ✓

Table A2: Determinants of the percent reduction in climate risk attributable to general equilibrium forces
(trade and migration). Robust standard errors in parentheses.

B Additional appendices

In each period t, the model is described by several equations,

• Technology and factor price determination,

Yd = ZdLd, wd = pdZd

• Preferences which generate,

Vd = Ad
wd

Pd
, Pd =

(∑
o

(τodpo)
1−σ

) 1
1−σ

and a notion of welfare,

Wo =

(∑
d

(Vd/µod)
ϵ

)1/ϵ

= Vo

(∑
d

µ−ϵ
od (Vd/Vo)

ϵ

)1/ϵ

as well as migration choice probabilities,

Mod =
(Vd/µod)

ϵ∑
d′(Vd′/µod′)ϵ

• and period-t market clearing,
Ld,t =

∑
o

ModLo,t−1

and,

poYo =
∑
d

(
τodpo
Pd

)1−σ

pdYd
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B.1 First-order decomposition

B.1.1 d lnZ shocks

Holding fixed amenity shocks d lnAd = 0, we start by log-differentiating welfare,

d lnWo = d lnVo︸ ︷︷ ︸
real income effect

+
∑
d

Mod (d lnVd − d lnVo)︸ ︷︷ ︸
migration option value

Now,
d lnVd = d lnZd︸ ︷︷ ︸

direct effect

+ d ln pd − d lnPd︸ ︷︷ ︸
trade effects

Now note,

d lnPd =
∑
o

(
τpdpo
Pd

)1−σ

︸ ︷︷ ︸
Tod

d ln po

In matrix notation, this is d lnP = T⊤d ln p. Taking stock, in matrix notation, we have,

d lnV = d lnZ + (I−T⊤)d ln p

And so,

d lnW = d lnV + (M− I)d lnV

= d lnZ︸ ︷︷ ︸
direct effects

+(I−T⊤)d ln p︸ ︷︷ ︸
trade effects

+(M− I)
[
d lnZ + (I−T⊤)d ln p

]
︸ ︷︷ ︸

migration effects

What remains is to solve for d ln p as a function of d lnZ. Doing so requires we understand the endogeneity
of population in this model.

From the logit migration probabilities, we know,

d lnMod = ϵ

(
d lnVd −

∑
d′

Mod′d lnVd′

)
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So we can write,

dLd,t =
∑
o

Mod,t(d lnMod)Lo,t−1

dLd,t = ϵ
∑
o

Mod,t

(
d lnVd −

∑
d′

Mod′d lnVd′

)
Lo,t−1

= ϵ
∑
o

Mod,t(d lnVd)Lo,t−1 − ϵ
∑
o

Mod

(∑
d′

Mod′d lnVd′

)
Lo,t−1

= ϵ(d lnVd)Ld,t − ϵ
∑
o

Mod

(∑
d′

Mod′d lnVd′

)
Lo,t−1

So then,
=⇒ d lnLd,t = ϵ(d lnVd)− ϵ

∑
o

Mod,tLo,t−1∑
oMod,tLo,t−1

∑
d′

Mod′d lnVd′

Define Lod,t =
Mod,tLo,t−1∑
o′ Mo′d,tLo′,t−1

: this is the share of persons in destination d who originated in o, so stacking,
in vectors, we can write,

d lnL = ϵ(I− L⊤M)d lnV

Now, let’s analyze prices.

We start from,
poYo =

∑
d

TodpdYd

We know,

d ln po + d lnYo =
∑
d

Tod(d ln pd + d lnYd)
pdYd
poYo

+
∑
d

(d lnTod)Tod
pdYd
poYo

Defining Sod = Tod
pdYd
poYo

which is the share of GDP in o attributed to sales in d, we can write,

d ln po + d lnYo =
∑
d

Sod(d ln pd + d lnYd) +
∑
d

Sod(d lnTod)

Now,

d lnTod = (1− σ)

(
d ln po −

∑
o′

To′dd ln po′

)
So stacking in matrix form,

d ln p+ d lnY = S(d ln p+ d lnY )− (σ − 1)
(
I− ST⊤

)
d ln p

Rearranging, (
σI− S− (σ − 1)ST⊤

)
d ln p = (S− I)d lnY

Or,
d ln p =

(
σI− S− (σ − 1)ST⊤

)−1
(S− I)d lnY
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Now, note that,

d lnY = d lnZ + d lnL

= d lnZ + ϵ(I− L⊤M)d lnV

= d lnZ + ϵ(I− L⊤M)
[
d lnZ + (I−T⊤)d ln p

]
=
(
I+ ϵ(I− L⊤M)

)
d lnZ + ϵ(I− L⊤M)(I−T⊤)d ln p

This means that,

d ln p =
(
σI− S− (σ − 1)ST⊤

)−1
(S− I)

[(
I+ ϵ(I− L⊤M)

)
d lnZ + ϵ(I− L⊤M)(I−T⊤)d ln p

]
Or, (

I−
(
σI− S− (σ − 1)ST⊤

)−1
(S− I)ϵ(I− L⊤M)(I−T⊤)

)
d ln p

=
(
σI− S− (σ − 1)ST⊤

)−1
(S− I)

(
I+ ϵ(I− L⊤M)

)
d lnZ

Which for simplicity, we can just call, d ln p = AZd lnZ.

This means, then, that,

d lnW =

 I︸︷︷︸
direct effects

+(I−T⊤)AZ︸ ︷︷ ︸
trade effects

+ (M− I)︸ ︷︷ ︸
migration effects

+(M− I)(I−T⊤)AZ︸ ︷︷ ︸
trade-migration interaction

 d lnZ

This allows us to separate out variance in W driven by direct, trade, migration, and interaction effects.

B.1.2 d lnL0 shocks

Now, we want to analyze,

d lnW = (I−T⊤)d ln p+ (M− I)(I−T⊤)d ln p

when d lnZ = d lnA = 0 but d lnL0 is allowed to vary.

Now, as Ld =
∑

oModL
0
o , we have that,

dLd =
∑
o

Mod(d lnMod)L
0
o +

∑
o

ModdL
0
o

We know the first term is,

=⇒ d lnLd,t = ϵ(d lnVd)− ϵ
∑
o

Mod,tLo,t−1∑
oMod,tLo,t−1

∑
d′

Mod′d lnVd′
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the second term can be written as, ∑
o

ModL
0
o∑

o′ Mo′dL
0
o′
d lnL0

o

Which gives,
d lnL = ϵ(I− L⊤M)d lnV + L⊤d lnL0

where of course, d lnV = (I−T⊤)d ln p.

So, as d lnZ = 0,
d lnY = ϵ(I− L⊤M)(I−T⊤)d ln p+ L⊤d lnL0

And we know,
d ln p =

(
σI− S− (σ − 1)ST⊤

)−1
(S− I)d lnY

So,

d ln p =
(
σI− S− (σ − 1)ST⊤

)−1
(S− I)d lnY

=
(
σI− S− (σ − 1)ST⊤

)−1
(S− I)

[
ϵ(I− L⊤M)(I−T⊤)d ln p+ L⊤d lnL0

]
So,

d ln p =

(
I−

(
σI− S− (σ − 1)ST⊤

)−1
(S− I)

)−1 (
σI− S− (σ − 1)ST⊤

)−1
(S− I)L⊤d lnL0

B.2 Joint shocks and the accumulation of welfare effects

Recall that,
d lnL = ϵ(I− L⊤M)d lnV + L⊤d lnL0

and,
d lnV = d lnZ + (I−T⊤)d ln p

and,
d ln p =

(
σI− S− (σ − 1)ST⊤

)−1
(S− I)d lnY

where, d lnY = d lnZ + d lnL. Plugging in,

d ln p =
(
σI− S− (σ − 1)ST⊤

)−1
(S− I) [d lnZ + d lnL]

=
(
σI− S− (σ − 1)ST⊤

)−1
(S− I)

[
d lnZ + ϵ(I− L⊤M)d lnV + L⊤d lnL0

]
=
(
σI− S− (σ − 1)ST⊤

)−1
(S− I)

[
d lnZ + ϵ(I− L⊤M)

[
d lnZ + (I−T⊤)d ln p

]
+ L⊤d lnL0

]
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Simplifying, Q =
(
σI− S− (σ − 1)ST⊤)−1

(S− I), we have,

d ln p = Q
[
(I+ ϵ(I− L⊤M))d lnZ + L⊤d lnL0 + ϵ(I− L⊤M)(I−T⊤)d ln p

]
So,

d ln p = (I−Qϵ(I− L⊤M)(I−T⊤))−1Q
[
(I+ ϵ(I− L⊤M))d lnZ + L⊤d lnL0

]
Call,

AZ ≡ (I−Qϵ(I− L⊤M)(I−T⊤))−1Q
(
I+ ϵ(I− L⊤M)

)
and,

AL ≡ (I−Qϵ(I− L⊤M)(I−T⊤))−1QL⊤

So now,

d lnW =
[
(I+ (I−T⊤)AZ + (M− I)(I+ (I−T⊤)AZ)

]
︸ ︷︷ ︸

≡RZ

d lnZ +M(I−T⊤)AL︸ ︷︷ ︸
≡RL

d lnL

So,
lnWt −Wt−1 = RZd lnZt +RLd lnL0

t

d lnL is given as a function of the state,Zt−1, as are the matricesRZ ,RL (mechanically,Zt = Zt−1 exp(d lnZt).
and Lt = Mt−1Lt−1).

So, given W0,

lnWt − lnW0 ≈
t∑

n=1

d lnWn

as d lnWn ≈ lnWn − lnWn−1.

So then,

lnWt − lnW0 ≈
t∑

n=1

d lnWn

=
t∑

n=1

RZ
n−1d lnZn +RL

n−1d lnL
0
n

=
t∑

n=1

RZ
n−1d lnZn +

t∑
n=1

RL
n−1d lnL

0
n︸ ︷︷ ︸

population convergence,≡Lt

=

t∑
n=1

(I+ T n−1 +Mn−1) d lnZn + Lt

where T n−1 capture trade propagation effects for time n shocks (and because of the linearization, that matrix
is measurable at time n− 1), and Mn−1 captures migration and migration-trade interaction effects.
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B.3 Using the linearization for decomposition

For a path of shocks d lnZ(k)
t , we decompose the effects of each channel on welfare as, e.g.,

direct role(k)t =

∑t
n=1 d lnZ

(k)
n

lnWt − lnW0

trade role(k)t =

∑t
n=1 T n−1d lnZ

(k)
n

lnWt − lnW0

migration role(k)t =

∑t
n=1Mn−1d lnZ

(k)
n + Lt

lnWt − lnW0

We can also consider aggregate welfare, Υt = L⊤
t Wt. Decomposing any change, we have that,

Υt −Υt−1 = ln
∑
i

Li,tWi,t − ln
∑
i

Li,t−1Wi,t−1

Törnqvist, ≈
∑
i

1

2
(sit + si,t−1)(d lnWit + d lnLit), si =

WitLit

Υit

≈
∑
i

1

2
(sit + si,t−1) [(I+ T t−1 +Mt−1)d lnZ + Lt]i +

∑
i

1

2
(sit + si,t−1)(d lnLit)

Now we also know d lnLit,

d lnLt = ϵ(I− L⊤M)
[
I+ (I−T⊤)AZ

]
d lnZt + L⊤d lnLt−1

Similarly, we can decompose the variance across chains (k) through,

trade variance sharet =
Vark

(∑t
n=1

(
I+ T (k)

n−1

)
d lnZ

(k)
n

)
−Vark

(∑t
n=1 d lnZ

(k)
n

)
Vark(lnWt −W0)

and similarly for migration share, and then the residual share captures are interactions and autocorrelation-
s/covariances.

This works because, for, e.g., shock matrix Σ, we’re basically attributing,

(I + T +M)Σ(I + T +M)′ = Σ+ TΣ+ ΣT ′ + TΣT ′︸ ︷︷ ︸
trade component

+...

And then we’re accumulating the variances. All the autocorrelations from the accumulation are in the resid-
ual.
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B.4 Second order effects

Start from,
d lnWo = d lnVo +

∑
d

Mod(d lnVd − d lnVo)

Differentiating again,

d2 lnWo = d2 lnVo +
∑
d

Mod(d lnMod)(d lnVd − d lnVo) +
∑
od

Mod(d
2 lnVd/Vo)

And,
d2 lnVd = d2 lnZo + d2 ln pd −

∑
o

Tod(d lnTod)(d ln po)−
∑
o

Tod(d
2 ln po)

But d2 lnZ = 0 by construction; it’s the exogenous shock. Moreover, recall,

d lnTod = −(σ − 1)

(
d ln po −

∑
o′

To′dd ln po′

)

So,

d2 lnVd = d2 ln pd + (σ − 1)
∑
o

Tod

(
d ln po −

∑
o′

To′dd ln po′

)
(d ln po)−

∑
o

Tod(d
2 ln po)

Writing,

VarT·d (d ln po) =
∑
o

Tod(d ln po)
2 −

(∑
o

Todd ln po

)2

We have,
d2 lnVd = (σ − 1)VarT·d (d ln po)−

∑
o

Tod(d
2 ln po − d2 ln pd)

i.e., “adaptation” through trade (price variance good, as we are maximizing) and second order price effects.

Now, to recall that,

d lnMod = ϵ

(
d lnVd −

∑
d′

Mod′d lnVd′

)
So,

d2 lnWo = d2 lnVo + ϵ
∑
d

Mod

(
d lnVd −

∑
d′

Mod′d lnVd′

)
(d lnVd − d lnVo) +

∑
od

Mod(d
2 lnVd/Vo)

Similarly, defining,

VarMo·(d lnVd/Vo) =
∑
d

Mod(d ln(Vd/Vo))
2 −

(∑
d

Modd ln(Vd/Vo)

)2
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We can write,
d2 lnWo = d2 lnVo + ϵVarMo·(d lnVd/Vo) +

∑
od

Mod(d
2 lnVd/Vo)

and then filling in for d2 lnVo,

d2 lnWo = (σ − 1)VarT·d (d ln po)︸ ︷︷ ︸
trade adaptation

+ ϵVarMo·(d lnVd/Vo)︸ ︷︷ ︸
migration adaptation

+
∑
od

Mod(d
2 lnVd/Vo)−

∑
o

Tod(d
2 ln po/pd)︸ ︷︷ ︸

second order price effects

And note to compute these, we have that, d ln p = A d lnZ and d lnV =
(
I+ (I−T⊤)A

)
d lnZ.

C Inversion

C.1 Recovering productivity, Zit

wiLi =
∑
j

(
τijwi/Zi

Pj

)1−σ

wjLj

wσ
i LiZ

1−σ
i =

∑
j

(τij)
1−σ wjLj

P 1−σ
j

Z1−σ
i = w−σ

i L−1
i

∑
j

(τij)
1−σ wjLj

P 1−σ
j

Zi = w
σ

σ−1

i L
1

σ−1

i

∑
j

(τij)
1−σ wjLj

P 1−σ
j

 1
1−σ

and,

Pj =

(∑
k

τ1−σ
kj (wk/Zk)

1−σ

) 1
1−σ

so the iteration is,

Z
(n+1)
i = w

σ
σ−1

i L
1

σ−1

i

∑
j

(τij)
1−σ wjLj(∑

k τ
1−σ
kj

(
wk/Z

(n)
k

)1−σ
)


1
1−σ

As Z is only identified up to scale through this procedure, we impose the price in the USA to equal one,
pUSA = 1 and we rescale Z(n) on each iteration so that ZUSA = yUSA in every year.

InvertingZ requires that we have a complete panel of productivity. To form this panel and invert productivity,
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we interpolate GDP/cap for countries with missing values in the WDIs. To do so, we estimate,

ln yit = β ln popi + γi · yUSA,t + αit+ ξi + ξt + eit

and use this regression to construct GDP/cap, yit for missing observations. Appendix Figure A6 shows the
fit of this interpolation exercise for countries with missing time series data.

Recovering ‘stationary’ amenities

The migration shares equation gives us,

Lj =
∑
i

µ−ϵ
ij

(
Ajvj∑

k(µikAkvk)

)ϵ

Li

where vj = wj/Pj , which can be computed knowing the inverted Z and σ. Rearranging,

A−ϵ
j = L−1

j

∑
i

µ−ϵ
ij

(
Ajvj∑

k(µikAkvk)

)ϵ

Li

which suggests the updater,

A
(n+1)
j = L

1/ϵ
j

∑
i

µ−ϵ
ij v

ϵ
j∑

k µ
−ϵ
ik

(
A

(n)
k vk

)Li

−1/ϵ
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Figure A6: Interpolated and existing GDP/cap data. Time runs from 1960 to 2019.
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