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Abstract

The household’s price elasticity of demand is a key input to many economic models’ con-
struction of markups and the assessment of consumer surplus. We measure the price elasticity
of demand for around 14,000 products by region-year using retail scanner data. In all, we esti-
mate over 7.5 million demand elasticities. We find that the distribution of these elasticities is
stationary over time. However, we document substantial spatial heterogeneity in consumers’
price sensitivity: consumers in the largest markets are the most price elastic. As demand
elasticities are a key input into the measurement of markups, our results suggest that any con-
clusions that markups are rising in retail markets must be driven by assumptions on conduct.
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1 Introduction

This paper reports facts about the demand elasticities for every good in every market and

year in the Nielsen Retail Measurement Services (RMS) retail scanner data. We have two

key findings: one, that the distribution of demand elasticities across all consumption goods

measured in the Nielsen data has not changed over the 2006-2017 period. Moreover, the

distribution of time trends in demand elasticities within each good-market is centered at zero

and has little spread. Two, despite little variation within or across elasticities over time, there

is substantial spatial heterogeneity within goods across markets: consumers in the largest

markets are the most price elastic, but there is no relationship between population growth

and trends in the demand elasticity time-series. The regions where preferences became more

price-inelastic are confined to a handful of major metropolitan areas, including New York, Los

Angeles, and San Francisco.

Recent literature documents increasingly concentrated product markets and rising corpo-

rate profits. See Berry et al. (2019) for a review. Whether these trends harm consumers

depends on the nature of competition and the extent to which firms can raise prices above

marginal costs. Consequently, a suite of studies have sought to measure price markups using

off-the-shelf quantitative models from industrial organization. These range from from specific

studies, e.g., Grieco et al. (2021) for automobiles, or Ganapati and McKibbin (2021) for phar-

maceuticals, to economy-wide estimates: e.g., Anderson et al. (2020) use cost data to estimate

markups in the retail sector.

Demand elasticities are a key input to the measurement of markups and any assessment

of consumer welfare. The more price-inelastic demand is, the more a monopolist can raise

price above marginal cost. Inferring markups through demand estimation requires a measure

of firms’ own price elasticities, cross-price elasticities for many-product firms, firms’ market

shares, and assumptions on the nature of competition. With these objects, researchers can

invert firms’ first-order conditions and recover markups.

This work documents that own-price elasticity of demand for products in the RMS data has

not changed from 2006 to 2017. Instead, we find the distribution to be remarkably stable, with

fairly modest spread. Our results run counter to work finding increasingly inelastic demand

elasticities in the retail scanner data driven by niche consumption for a small set of product
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categories (Brand, 2021).1 However, Neiman and Vavra (2021) demonstrate that markups

need rise even as demand becomes more inelastic due to entry.

Previous work uses the demand-estimation procedure of Berry et al. (1995) (hereon, BLP)

to estimate demand elasticities at the module (product category) level. BLP allows for con-

sumer heterogeneity by allowing for random coefficients on consumer demographics in the

underlying utility model, meaning that the researcher may infer changes in demand elasticities

and markups from secular demographic changes. We mitigate these concerns by estimating

demand for the universe of products in the retail scanner data at the region-year level using a

log-linear estimation equation and standard set of instrumental variables. We use an empir-

ical Bayes shrinkage technique to correct these estimates for measurement error and impose

the prior of downward-sloping demand, so that measurement error and sign changes do not

contaminate our estimates of the time-series and spatial properties of the distribution.

Our approach follows the large-scale estimation of preference parameters in the industrial

organization, trade, and urban literature. For example, Hitsch et al. (2019) and DellaVigna

and Gentzkow (2019) estimate demand elasticities at the brand-store level in the scanner data

to understand price dispersion within and across establishments. Broda and Weinstein (2006)

estimate elasticities of substitution using trade data to construct ideal price indices. Handbury

and Weinstein (2010) and Handbury (Forthcoming) construct regional price indices for goods

in the scanner data. We depart from this literature by studying the preference parameter

estimates themselves, rather than use them as inputs to construct markups or price indices.

Instead, we closely follow Tran (2021), who estimates the effect of broadband exposure on

brand-county-year demand elasticities. Our work complements Anderson et al. (2020) who

use cost data for retailers to study markups across years and markets in the retail industry:

like them, we find substantial spatial variation, but little temporal variation in our estimates

of demand elasticities.

The rest of the paper is organized as follows: in Section 2 we discuss the data, demand

estimation, and procedure to correct for measurement error. In Section 3, we present evidence

that demand elasticities have stayed flat over time but vary over space. Section 4 concludes.

1Brand (2021) estimates the distribution of own price elasticities for nine product-cateogries: Fruit drinks, soup,
cookies, pizza, ice cream, entrees, yogurt, fruit, and light beer. See Döpper et al. (2021) for an expansion of this
work to a larger set of product categories.
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2 Data and empirical approach

2.1 Data

Our analysis uses the Nielsen Retail Measurement Services data, otherwise knows as the RMS

or scanner data. The RMS data is store-level data on quantities, prices, and promotions,

covering almost 40,000 stores. The selection of retailers ranges from gas stations to major

retailer chains and covers over 50% of spending at all groceries and drugstores.

The data measures sales in terms of quantities and (quantity-weighted) prices at the week

level. The data only record prices for positive transactions, and subsequently we omit observa-

tions for which the sales volume is zero. Following standard practice the industrial organization

and marketing literature, we aggregate universal product code (UPC) sales to the brand level

(e.g., Coke), and use this as the definition of product. Each product is uniquely nested in a

module: a product category, e.g., sugar. Our data include around 14,000 unique products. In

all, we estimate demand elasticities for around 7.5 million unique product-region-years in the

data.2 We use the Nielsen Designated Market Area (DMA) as our definition of region. These

regions include major metropolitan areas like New York and Los Angeles, and smaller regions

like Juneau, Alaska and Zanesville, Ohio. In all, the Nielsen DMAs partion the country into

209 regions.

2.2 Demand estimation

We estimate a simple log-linear demand system and omit cross-price effects. While BLP esti-

mates allow for flexible substitution patterns, estimation is notoriously numerically unstable,

and implementation procedures can often converge to local optima (Knittel and Metaxoglou,

2014). Our estimates, by contrast, are simple and computationally tractable two-stage-least-

squares estimates.

We denote quantities q and prices p. For a product j in module m sold at store s in market

d observed in week w in quarter t in year y, we estimate log-linear regressions,

log qjsw = αjdy log pjsw + θjdty + ujst, (1)

2This is about 24% of the possible combination of all product-region-years. It is a small fraction as not all goods
are sold in all markets in all years.
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where θjdty are brand-market-quarter-year fixed effects. The variation used to estimate αjdy

then is cross-store and week data within a DMA-quarter. The coefficient on price, αjdy, is the

price elasticity of demand for product j in region d in year y. Prices and quantities are endoge-

nously determined through market forces, so an OLS regression of quantities on prices cannot

yield a consistent estimate of αjdy. To correct for this, we form a shift-share price instrument

in the spirit of Hausman (1996). We instrument log prices with the log average price across

other stores in the same chain but in different markets. Conditional on our fixed effects, which

account for brand-level seasonality, the assumption needed to consistently estimate αjdy is that

changes in the pricing decisions that apply to the entire chain are orthogonal to local demand

conditions for a given product. This exclusion restriction is consistent with evidence of uni-

form pricing across stores despite substantial variation in demand elasticities, as documented

in DellaVigna and Gentzkow (2019). Under this standard assumption, the interpretation our

estimates are that α̂jdy represents the own-price short-run elasticity of demand for a given

product-region.

2.3 Elasticity correction

Estimates α̂jdy from the two-stage-least-squares (TSLS) estimation of (1) are extremely noisy.

We jointly correct for measurement error and impose the prior that demand slopes down-

wards with an empirical Bayes procedure. Our procedure uses information from the elasticity

distribution within a module-year as a prior to update each individual brand-market-year

elasticity estimate. Empirical Bayes models are computationally tractable approximations to

hierarchical Bayes models with prior parameters set to their highest likelihood values.

Empirical Bayes corrections for noisily estimated measures is common in the literature.

For example, hierarchical models have been used to better measure teacher value-added (Kane

and Staiger, 2008; Chetty et al., 2014), hospital fixed effects for clinical outcomes (Chandra

et al., 2016), and even for demand elasticities using the RMS data (DellaVigna and Gentzkow,

2019; Hitsch et al., 2019; Brand, 2021). Brand (2021) argues that due to growth in sales and

the number of products, earlier demand elasticity estimates may be less precisely estimated

than those estimated in more recent years. Failure to account for changing estimate precision

over time (and space: as regions grow, more varieties may enter the market) may cause the
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Figure 1: Distribution of OLS and empirical Bayes (EB) estimates of the dis-
tribution of product-market-year demand elasticities, α̂jdy.

researcher to overstate the time trend for a given elasticity.

Our underlying hierarchical model is,

α̂jdy | αjdy ∼ N(αjdy, σ
2
α)

αjdy ∼ N(−10,0)(µmy, σ
2
µ)

where in the second level of the hierarchy, we truncate the elasticity distribution over products

within a module to make sure demand curves slope downward. The use of a truncated nor-

mal allows us to stay within the exponential family of distributions and derive a closed-form

expression for the mean of the posterior. In short, as a truncated normal is conjugate with

a normal likelihood, the posterior distribution for αjdy | α̂jdy is also truncated normal. See

Appendix A for details on the estimation procedure.

The empirical Bayes procedure is essentially a signal extraction problem that uses informa-

tion from estimates from other products within a module-market-year to correct for measure-

ment error and moreover impose the prior from economic theory that demand elasticities are
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less than or equal to zero.3 The truncation at −10 has little effect in practice. Less than 0.2% of

the IV estimates report an elasticity less than −10. We prefer our truncated-normal empirical

Bayes approach to the shrinkage estimators in e.g., DellaVigna and Gentzkow (2019), which

combines normal-normal hierarchical model with ad-hoc rules to winsorize the data, dropping

estimates whose coefficients or standard errors are too large. In contrast, our procedure allows

us to retain all of the data, with minimal bunching in the tails of the distribution of posterior

estimates.

Figure 1 displays the histogram of estimated product-region-year demand elasticities before

and after the Empirical Bayes’ correction. The distribution of TSLS estimates is left-skew and

centered below zero, though there is some positive mass, and has very long tails. The EB

distribution is by construction shifted left and has considerable mass around zero, due to a

nontrivial amount of precisely estimated positive demand elasticities. The truncation at −10

has no visible effect; there is no excess mass piling up to the right of the truncation point. The

median of the sales-weighted EB estimates is −2.13, though the distribution is left skew and

its mean is −2.60.

3 Results

3.1 Distribution

The demand elasticity time-series Figure 2 displays the time series for the middle 80% of

the distribution of demand elasticities, weighted by their sales share. The median elasticity of

about −2 stays almost constant over time, becoming slightly more inelastic in 2017. Almost

all the other percentiles of the distribution remain constant in time as well.

Almost one quarter of the elasticities in our data are measured above −1, indicating inelastic

demand. This is inconsistent with monopoly pricing, wherein the profit-maximizing monopolist

always prices along the elastic portion of the demand curve.

3While in theory, demand may slope upwards for Giffen and Veblen goods, evidence for Giffen goods is limited
to extremely poor parts of the world (Jensen and Miller, 2008), and the data do not contain products suspected to
have the Veblen property, like yachts and luxury cars.
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Figure 2: The time series of the distribution of demand elasticities estimates,
weighted by revenue. The light-blue colored bands indicate percentiles of the
distribution.

Product-specific trends We estimate product-region time trends through a linear regression,

log(−α̂jdy) = γjd + βjd × y + vjdy. (2)

The transformation of the regressand means that the unique product-region coefficient βjd has

the interpretation of the average annual percent change in the demand elasticity. Moreover,

we flip the sign on the elasticities, so that βjd < 0 indicates demand becoming more inelastic.

We estimate product-region unique time trends by first differencing (2) and recovering the

fixed effects, β̂jd. This ameliorates the need to estimate an extrodinary number of fixed effects

to account for product-region specific intercept terms. Figure 3 displays the middle 98% of

the distribution weighted by sales volume.

The median of the distribution (dashed line) is to the right of zero: more than half the

estimated elasticities are trending more elastic in time. The distribution is fairly tightly es-

timated around the mean; the middle 50% of the distribution estimates an annual percent

change between −0.7% and 3%.
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Figure 3: The distribution of individual time trends. The dashed line represents
the median of the distribution.

3.2 Spatial variation in elasticities

Figure 4 shows the relationship between the sales-weighted average demand elasticity and

market population. Though in the cross-section, demand is most elastic in the largest markets,

there is no relationship between population trend and the trend in the sales-weighted average

demand elasticity.

Figure 5 maps the median sales-weighted average demand elasticity time trend by market.

The figure shows that downwards trends – i.e., demand becoming more inelastic – is confined

to a handful of regions in the country, most of them major metropolitan areas.

4 Conclusion

In this paper, we reported evidence that the household’s price elasticity of demand for different

has not changed over time, using information from nearly 14,000 products across 11 years in

over 200 markets in the United States. However, while there has been no change in prefer-

ence parameters, we find there is substantial spatial heterogeneity. Larger markets have more

inelastic demand. While this relationship holds in the cross-section, we find there is no rela-
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Figure 4: Correlations between region population and demand elasticities. Left:
cross section, Right: time trends

.

Figure 5: Correlations between region population and demand elasticities. Left:
cross section, Right: time trends

tionship between population growth and changes in demand parameters. Areas where demand

became more inelastic over the study period are confined to a handful of major metropolitan

areas.

Our results suggest that trends in unobservables, recovered from economic models, in which

preference parameters are a key input, are driven by other features of the data. In particu-

lar, trends in markups or consumer surplus must come from assumptions on the nature of

competition and changes in market shares and cross-price elasticities. Nearly a quarter of our

estimated elasticities fall above −1, which is inconsistent with monopoly pricing, suggesting

the standard assumption of differentiated Bertrand competition may fail in practice.
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A Shrinkage estimation for demand elasticities

Recall the hierarchical model is,

α̂OLS | α ∼ N(α, σ2α)

α ∼ N(−∞,0)(µ, σ
2
µ)

Our empirical Bayes estimate of α, α̂EB is defined as the expectation of E[α | α̂OLS ]. The

associated posterior density has the form,

f(α | α̂OLS) ∝ f(α̂OLS | α)π(α)

where f(α̂ | α) is the normal likelihood of observing the OLS estimate given the underlying

parameter, and π(α) is our prior on the parameter. As the product of two normal densities

is also normal, it follows that the product of a normal distribution with a truncated normal

is also truncated normal. We write the parameters of the posterior distribution θ and τ . The

posterior truncated normal has the same location (mean) and scale (variance) parameters as

had the prior been normal, since the use of the truncated distribution simply removes part of

the support and rescales the posterior. Thus we can apply the standard normal likelihood and

normal prior empirical Bayes shrinkage procedure to recover these parameters,

θ =
σ̂−2α

σ̂−2α + σ̂−2µ
α̂OLS +

σ̂−2µ

σ̂−2α + σ̂−2µ
µ̂

τ2 = σ̂2α
σ̂−2µ

σ̂−2α + σ̂−2µ

Finally, we recover the mean of the posterior distribution f(α | α̂OLS) by using the Inverse

Mills ratio, common to selection-correction procedures, which provides an analytic expression

for the moments of the truncated normal distribution,

α̂EB = E[α | α̂OLS ] = θ − τ φ((−10− θ)/τ)− φ(−θ/τ)

Φ((−10− θ)/τ)− Φ(−θ/τ)

where φ and Φ are the PDF and CDF for a standard normal distribution.

Following Morris (1983) We form µ̂ by taking the weighted mean of α̂ within a module-
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region-year, where the weights are 1/(se(α̂) + se(µ̂)). As µ̂ appears on both the left and right

hand side, we repeatedly estimate µ̂ until convergence starting with a guess of se(µ̂) = 0. In

practice, we run this procedure for 4 iterations per estimator. In most cases, it converges in

fewer, though in a handful of cases, the iteration error upon completion is larger than our

tolerance of 1e-5, though seldom exceeding 1e-4.
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